Compensating Voltage Sag Using 5-Level Flying Capacitor Multi Level Inverter Based DVR

R.T. Padagalinngam

M.E. Power Management, Regional centre of Anna University, Madurai.

Abstract: This paper presents the application of dynamic voltage restorers (DVR) on power distribution systems for mitigation of voltage sags, harmonics and imbalances at sensitive loads. The dynamic voltage restorer (DVR) has become popular as a cost effective solution for the protection of sensitive loads from voltage sags and swells. It would be advantageous that a DVR could also be used to compensate any steady state load voltage harmonics, since this would increase the Power Quality. The DVR, which is based on a five-level flying-capacitor voltage Source inverter (VSC), has been proved suitable for the task of compensating voltage disturbance. The performance of the DVR depends on control technique involved. This paper presents the control system based on the so-called repetitive control. Unlike other control schemes with a comparable range of applicability, only one controller is needed to cancel out all three disturbances simultaneously, while exhibiting good dynamic performance. Simulation results are presented to illustrate and understand the performances of DVR in supporting load voltage. To evaluate the quality of the load voltage during the operation of DVR, Total Harmonic Distortion (THD) is calculated.

Keywords: Dynamic voltage restorer (DVR), Flying Capacitor multilevel inverter, power quality (PQ), repetitive control, voltage sags, MATLAB-SIMULINK.

I. INTRODUCTION

POWER quality (PQ) has become an important issue over the past two decades due to the relentless integration of sensitive loads in electrical power systems, the disturbances introduced by nonlinear loads, and the rapid growth of renewable energy sources. Arguably, the most common PQ disturbance in a power system is voltage sags, but other disturbances, such as harmonic voltages and voltage imbalances, may also affect end user and utility equipment leading to production downtime and, in some cases, equipment terminal damage. The dynamic voltage restorer (DVR) is one of the most efficient and economic devices to compensate voltage sags. The DVR is basically a voltage-source converter in series with the ac grid via an interfacing transformer, conceived to mitigate voltage sags and swells. For low-voltage applications, DVRs based on two-level inverters are normally used and, therefore, much of the published literature on DVRs deals with this kind of converter. Nevertheless, for higher power applications, power-electronic devices are usually connected to the Medium-voltage (MV) grid the use of two-level voltage converters becomes difficult to justify owing to the high voltages that the switches must block. One solution is to use multilevel voltage-source converters which allow high power-handling capability with lower harmonic distortion and lower switching power losses than the two-level converter. Among the different topologies of multilevel inverters, the most popular are: neutral-point-clamped converters (NPC), flying-capacitor converters (FC), and cascaded-multimodal or H-bridge converters. NPC converters require clamping diodes and are prone to voltage imbalances in their dc capacitors. The H-bridge converter limitations are the large number of individual inverters and the number of isolated dc voltage sources required. The main drawback of FC converters is that the number of capacitors increases with the number of levels in the output voltage. However, they offer more flexibility in the choice of switching combinations, allowing more control of the voltage balance in the dc capacitors. Furthermore, the extension of a converter to a higher level one, beyond three levels, is easier in FC converters than in NPC converters, which make the FC topology more attractive. A more comprehensive list of the merits and drawbacks of each topology can be found in, while a detailed description of multilevel-inverters topologies as well as control strategies and
applications can be found in. Research work has been reported on several DVR multilevel topologies, but so far, no work seems to have been published on DVR’s by using FC multilevel inverters. This paper focuses on the design of a closed-loop control system for a DVR by using a five-level flying capacitor converter, based on the so-called repetitive control. Repetitive control was originally applied to eliminate speed fluctuations in electric motors but it has also been successfully used in power-electronics applications, such as power-factor control in three-phase rectifiers and active-filter control.

The control system presented in this paper has a wide range of applicability. It is used in a DVR system to eliminate voltage sags, harmonic voltages, and voltage imbalances within a bandwidth. Unlike other control schemes with a comparable range of applicability, only one controller is needed to cancel out all three disturbances simultaneously, while exhibiting good dynamic performance. On the one hand, a closed-loop controller, which consists of a feedback of the load voltage and the repetitive controller, guarantees zero tracking error in steady state. On the other hand, the applied control strategy for the voltage balancing of the flying capacitors, along with a feed forward term of the grid voltage and a controller for the output voltage of the DVR filter, provides excellent transient response. This paper is organized as follows. The model of a five-level flying-capacitor DVR is presented in Section II. The complete control-scheme structure is studied in Section III, including the three different control subsystems, namely, the filter output voltage controller, the repetitive control structure for the load voltage, and the flying-capacitor voltage regulator scheme, as well as the modulation method used to operate the multilevel converter. Simulation results obtained by implementing the control system and the five-level flying-capacitor DVR in MATLAB are presented in Section IV. Finally, the main conclusions are given in Section V.

II. CONFIGURATION OF THE DVR

A. Five-Level FC

Fig. 1 shows a phase leg of a five-level flying-capacitor converter, each phase leg has the same structure in three-phase converters, and the flying capacitors of one phase are independent from those of the other phases. The flying capacitor multilevel converter topology is that the extension to converters with more than three levels is easier than in the neutral-point-clamped option. Nevertheless, the number of capacitors becomes excessive as the number of levels increases.

Regarding the five-level topology shown in Fig. 1(b), the flying capacitors, and are charged to, , respectively. Therefore, each switch must block only a voltage value equal to, , allowing the use of switches with lower-rated voltage compared with those used in a conventional two-level converter. There are several switching combinations for the same given output voltage, which is known as switching redundancy. These switching combinations result in different charging or discharging states of the flying capacitors, which provide a degree of freedom for balancing the flying capacitor voltages. Comprehensive explanations of the switching combinations and their results can be found.
The location of the DVR placed between the grid and the sensitive equipment is shown in Fig. 2. Different kinds of loads are assumed to be connected to the point of common coupling (PCC), such as linear loads (e.g., induction motors), nonlinear loads, and sensitive equipment. The DVR consists of a five-level flying-capacitor voltage-source converter and energy storage which provides the necessary voltage to the dc link. The series connection of the DVR is achieved by means of a coupling transformer. A passive filter has been used to filter out the high harmonics generated by the PWM process.

The equivalent circuit for the one-line system in Fig. 2 is depicted in Fig. 3, where \(v_\text{s} \) is the supply voltage, models the line impedance, is the current injected by the supply, which splits at the PCC into the current flowing through the sensitive equipment \(i_\text{c} \) (this current is divided into the current through the coupling transformer and the current through the filter capacitor), and the current injected into the loads. The voltage \(V_\text{pcc} \) is the measured voltage at the PCC, \(\nu \) stands for

The equation of the sensitive-equipment voltage can be written as

\[
v(t) = v_\text{pcc}(t) + u_c(t)
\]

with the following state-variable model for the coupling transformer and the capacitor set:

\[
\frac{d}{dt} \begin{bmatrix} i_\text{c}(t) \\ u_\text{c}(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{L} & -\frac{1}{C_f} \\ \frac{1}{C_f} & -\frac{1}{L} \end{bmatrix} \begin{bmatrix} i_\text{c}(t) \\ u_\text{c}(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} i(t) + \begin{bmatrix} 0 \\ -\frac{1}{C_f} \end{bmatrix} u(t)
\]

where the state variables are and , the control input is and is a disturbance input.

III. CONTROL SYSTEM AND MODULATION STRATEGY

A. Control System for the Output Voltage of the LC Filter

System (2) is a second-order filter with natural frequency and damping coefficient . This filter exhibits a large resonance since the resistance \(R \) usually has a very small value and, therefore, the damping coefficient is also very small. To overcome this problem, closed-loop control of the filter output voltage is required. A proportional state-feedback controller plus a feed forward term are proposed for (2), with the following structure:

\[
K = \begin{bmatrix} k_i & k_{ii} \\ k_{ii} & k_{ii} \end{bmatrix}
\]

\[
\begin{bmatrix} i_\text{c}(t) \\ u_\text{c}(t) \end{bmatrix} = \begin{bmatrix} k_i \\ k_{ii} \end{bmatrix} + u_\text{c}(t) + h(i(t)) \quad (3)
\]

Where \(K \) is the feedback-gain matrix, \(u_{c*}(t) \) is the reference value, and the feed forward term \(h(i(t)) \) is a function of the disturbance \(i(t) \) on the voltage \(u_\text{c}(t) \). The gain matrix here has been designed in order to obtain
a second-order closed-loop system with natural frequency and damping coefficient =1, which means that the closed-loop system has two identical real poles equal to and the time response will not exhibit any over shoot. Furthermore, as will be shown in Section IV, this design implies that the gain is \(k_u \) equal to zero and, hence, there is no need to feed back the capacitor voltage.

In order to obtain the function \(h(i(t)) \), the Laplace transform is applied to (2) and (3), yielding

\[
U_c(s) = \frac{U^*_c(s) + H(s)I(s) - (Ls + R + k_i)I(s)}{LCf s^2 + C_f (R + k_i)s + 1}
\]

and \(H(s) \) is chosen so that the term \(I(s) \) has no effect in the capacitor voltage, which implies that \(H(s) = Ls + R + ki \) and \(h(i(t)) = Ldi/dt + (R + ki)i(t) \).

The structure of this control scheme can be seen in Fig. 4.

B. Load-Voltage Control Scheme

The control system developed in the previous section requires further development since it may be not able to guarantee a perfect compensation of the load voltage for every situation. In order to counteract possible disturbances which can affect the load voltage, an outer closed-loop control system is required. The control scheme proposed in this paper uses a feed forward term of the voltage at the PCC to improve the transient response and a feedback term of the load voltage to guarantee zero error in steady state against disturbances.

![Fig. 4. Filter-output-voltage control scheme.](image)

Voltage closed-loop control scheme including the regulator for the filter output voltage

Fig. 5 shows the complete continuous-time control system for the load voltage. Assuming that there are no modeling errors and neglecting any delay in the control system, the DVR can be seen as an ideal linear amplifier (see [24]). The coupling transformer, together with the capacitor \(C_f \), has been included in the figure as well as the detailed control system for the filter output voltage. The input \(V^*(S) \) is the set point for the load voltage \(V(s) \), \(U(s) \) is the DVR voltage, and \(V_{pcc}(s) \) is the supply voltage. Recalling that (5) Then, the load voltage can be calculated as (6)With (7) (8) In order to illustrate the main features of the repetitive control, a basic transfer function of the controller \(R(s) \) is proposed as (9) Where \(w1 \) is the fundamental frequency of the supply voltage.

C. Phase-Shifted Pulse width Modulation

Several modulation methods have been used in multilevel inverters according to the switching frequency [10]. In normal conditions, a selective harmonic elimination-pulse width modulation (SHE-PWM) is used, which allows eliminating certain low-order harmonics by choosing the switching instants and provides a low switching power loss due to the low equivalent switching frequency. This kind of modulation produces triple harmonics in the converter output voltage which are eliminated by means of the delta or floating star-connected transformer secondary windings. Nonetheless, for asymmetrical faults, the converter is required to generate unbalanced three-phase voltages and large triple harmonics would appear on the grid side as they could not be completely cancelled out by the transformer. For those situations, the solution proposed is to change from the SHE-PWM to the phase-shifted PWM, which does not produces low-order

184
harmonic voltages, although it exhibits a higher power loss than the SHE-PWM due to the higher switching frequency of the converter. In this paper, the well-known phase-shifted PWM method has been used since its implementation is simple and provides a certain degree of flying-capacitor voltage balance [7].

In a scheme with an n-level converter, n-1 triangular carriers with frequency \(f_c \) have to be compared with a common sinusoidal modulating signal with frequency \(f_m \) [27]. It is assumed that the carrier frequency is high enough to consider the modulating signal as a constant value in a period of the carrier. The switching instants are determined by the intersection between the modulating signal and the different carriers. A shifting phase of \(2\pi/(n-1) \) is introduced in each carrier, which ensures an effective switching frequency of \((n-1) f_c \) and improves the total harmonic distortion of the output voltage, while the frequency modulation ratio yields \(m_f = (n-1) f_c / f_m \). For the three-phase case, three modulating signals with a shifting phase of 120 are used. There are four regions in terms of the value of \(m \) shown in Fig. 6(a)–(d), respectively.

The control switching signals \(g_1, g_2, g_3, \) and \(g_4 \) for the main switches of \(S_{a1} \) to \(S_{a2} \) as well as switching states and associated capacitor charging and discharging modes.

IV Simulation Results

![Simulation Results](image)

Fig. represents the load voltage, input voltage(\(pu \)), injected voltage(\(pu \)), output current(\(pu \)) and external load voltage without DVR(\(pu \)) obtained through MATLAB simulation. The closed loop control of voltage swell compensation in a DVR system is shown in the Fig. 5.3. Initially the system was subjected to voltage sag at \(t=0.2s \) and remains up to \(t=0.4s \) with the total voltage sag duration of 0.2s. in a run time of 1s.
V. CONCLUSION

Nowadays, reliability and quality of electric power is one of the most discussed topics in power industry, there are numerous types of power quality issues and power problems. Among them, two power quality problems have been identified to be of major concern to the customers are voltage sags and harmonics, but this project is focusing on voltage sags. Voltage sags are huge problems for many industries, and it is probably the most pressing power quality problem today.

In this paper, DVR based on a five-level flying-capacitor converter operated by a repetitive-control scheme. This control structure simultaneously cancels out voltage sags, voltage imbalances, and voltage harmonics other than high-frequency switching harmonics. The control system is split into three subsystems: the first one works to eliminate the resonance peak of the filter used in the converter output voltage; while the second one is the repetitive control, which ensures a fast transient response and zero-tracking error in steady-state for any sinusoidal reference and for any sinusoidal disturbance whose frequencies are an integer multiple of the fundamental frequency. Finally, the third subsystem maintains constant, balanced voltages in the flying capacitors.

The control system, together with the DVR, has been implemented in MATLAB Comprehensive simulation results using an MV test system show the DVR’s excellent performance and the control system in order to protect sensitive equipment from PQ disturbances.

REFERENCES:

3. J. Dionisio Barros, Member, IEEE, and J. Fernando Silva, Senior Member, IEEE. "Multilevel Optimal Predictive Dynamic Voltage Restorer". IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 8, AUGUST 2010.

5. Pedro Roncero-Sánchez, Member, IEEE, and Enrique Acha, Senior Member, IEEE. "Dynamic Voltage Restorer Based on Flying Capacitor Multilevel inverters Operated by Repetitive Control". IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 24, NO. 2, APRIL 2009.

