Implementation and Analysis of Five-Level Buck Converter Open Loop System for High Voltage Application

Manu.N.R² and V.Nattarasu²

1 M.Tech in Industrial Electronics, SJCE, Mysore-570006, manu.vm10@gmail.com
2 Associate Professor, Dept. of ECE, SJCE, Mysore-570006, nattarasu@gmail.com

Abstract
The buck converter topology with higher voltage in the HVDC distribution system is a major challenge in the power converter implementation. The difficulty in implementation comes in the form of dv/dt loss across the switches, high voltage devices and high frequency operation. In order to get rid of these disadvantages the multilevel buck converter is introduced which because of the more number of switches in series reduces the voltage across each switch. The features of these converters are high gain, self balancing voltage, transformer less operation and reduced losses. The performance of the Five-Level Buck converter is analyzed by varying the designed value of inductor and capacitor by ±20%. The analysis of the simulation results are shows satisfactory performance of the converter. Matlab/simulink® has been used for computer simulation of the proposed Five-Level Buck converter under open loop condition.

Keywords: Buck, Converter, Losses, Ripple

1. Introduction
A nonisolated multilevel stepdown dc-dc converter suitable for high voltage application. The main features of this topology are: low voltage across the semiconductors; low switching losses and reduced volume of output filter[1].

The challenges and the opportunities associated with adopting the DC distribution scheme in the power systems, the issues like interaction between the power converters that are use to convert ac-dc and dc-ac and other challenging issue like proper grounding and neutral voltage shift are the major issues in the DC converter schemes[2].

Along with the increase in the capacity of offshore wind farms and the distance between the offshore wind farm and the land, the DC collection and the DC transmission grid, with the advantages such as reactive power and harmonics etc, becomes attractive under the growing trends of the offshore wind farm development[3-6].

The four switch full bridge dc to dc converter topology is basically for high input voltages, it gives one half of the input voltage across all the four switches, where in which the two legs of the converter are connected in series with each other across the input. Due to this the switching losses across switch reduces[7].

The voltage stress on each of the switches in the multilevel converter is one third of the input voltage, and this can be obtained by soft switching method so that the switches are of low resistance and low voltage rating can be used [8-9]. And another common solution to reduce the voltage loss across switches are with series input and parallel output connections, where here the low voltage MOSFET switches are used, and its application is only for the medium voltage [10].

In order to achieve the high power, high voltage and high current semiconductor switches are required. Currently the IGCT with breakdown voltage of (6.9kV) is the most commonly used semiconductor for high voltage application, and also the IGBT with breakdown voltage of (6.5kV) are used. So in practice for high switching frequency operation (>10 kHz) the most attractive switches are IGBT and MOSFET [11-12].

Within these parameters, this paper presents a non isolated five level buck converter for high voltage application. The main features of this five level converter are: low harmonic distortion, low voltage stress across switches, low EMI noise, high efficiency, ability to operate without magnetic components. The detailed design of inductor and capacitor along with there current and voltage ripples, and the analysis of the Five-Level buck converter with ±20% variation in the designed inductor and capacitor values under open loop condition are presented here.

It may be necessary to change the number of capacitors connected in series in accordance with the input voltage of the converter. The voltage across the capacitors must be balanced for the safe operation of the proposed converter. Fig. 1 shows the five level buck converter.

2. Design of the Inductor and Capacitor
The topology of the five level buck converter is taken from the flying capacitor multilevel inverters. Where they build the voltage levels by using the different levels of capacitors, the voltages of the capacitors add in each level resulting in increase in the voltage. But in the proposed converter it is the other way, it will decrease the voltage by the number of levels for each inclusion of the capacitor. Hence the topology acts as the buck converter.

Fig. 1: Five level buck converter

The analysis is performed considering the steady-state operation in continuous-conduction-mode of the five level Buck converter. The voltage over the semiconductors and the capacitors C_3 and C_4 is $V_i/4$, while the voltage across the capacitors C_1 and C_2 is $V_i/2$, where V_i is the input voltage.

The five level buck converter is operated in four operating regions. The waveforms for each operating region are shown and explained. The expression of static gain, inductor current ripple and the capacitor voltage ripple are derived.

2.1 Modulation strategy and main wave forms

The modulation strategy adopted here is based on phase-shift PWM, with 90 degree phase shift between subsequent carriers. There are four carrier signals, and each carrier signal is used to generate the gating pulse of one switch. And this technique allows the charging and discharging of each capacitor, and this implementation helps for active control of capacitor voltage balancing. The five level converter operated in four operating regions, and it is shown in below Table 1.

Fig. 2 shows the main wave forms (for the four operating regions) of the five level buck converter with switching period T_s.

From the Fig.2 it is observed that the proposed converter presents 16 switching states. And In Fig. 2 v_x is the voltage before the low pass filter (LC section), and the average voltage across the inductor is given by equation (1) where the area under $v(t)$ over the time period $T_s/4$ is considered.

\[
\frac{4}{T_s} \int_{t_0}^{t_0+T_s/4} v_L(t)dt = 0
\]

\[
v_i(t) = v_x(t) - v_0(t)
\]

2.2 Static Gain

The steady state operation requires that the inductor current at the end of the switching cycle be the same as that at the beginning, meaning that the net change in the inductor current over one period is zero. Where the one switching period is $0 - T_s/4$

\[
\frac{4}{T_s} \int_{t_0}^{t_0+T_s/4} v_L(t)dt = 0
\]

By considering that the converter is operating in region R1,

\[
\left(\frac{V_i}{4} - V_o\right)DT_s = V_o \left(\frac{1}{2} - D\right)T_s
\]

By rearranging the equation(3) the mathematical
expression of the static gain as a function of duty cycle \(D \) is obtained as shown in equation (4). And it shows that static gain of the five level buck converter is same as that of conventional buck converter.

\[
D = \frac{\Delta V_i}{V_i} \quad (4)
\]

2.3 Inductor Current Ripple

By considering the energy storing or the energy transfer state of the inductor, the current ripple in the inductor can be calculated and this expression is given in equation (5).

\[
\Delta i_L = \frac{1}{L} \int_0^1 v_L(t) \, dt \quad (5)
\]

The time interval \(t_k \) has different values depending on the operating region and it is obtained from Fig. 2.

The current ripple through the inductor has different behavior according to the operating region. So that equation (5) must be used for all operating regions of five level buck converter. Hence by changing the value of \(t_k \) in all the operating regions we can get the current ripple equation for each operating region.

In region R1,

\[
\Delta i_L = \frac{1}{L} \int_0^{T_s} v_L(t) \, dt
\]

And putting \((v_0 = D v_i)\) and \(T_s = \frac{1}{f_s}\)

\[
\Delta i_L = \frac{V_i}{4f_sL}(1 - 4D)D, \quad D < \frac{1}{2} \quad (6. \ a)
\]

In region R2,

\[
\Delta i_L = \frac{1}{L} \int_0^{T_s} v_L(t) \, dt
\]

\[
\Delta i_L = \frac{V_i}{4f_sL}(1 - 4D)D, \quad \frac{1}{2} \leq D < \frac{3}{4} \quad (6. \ b)
\]

In region R3,

\[
\Delta i_L = \frac{1}{L} \int_0^{T_s} v_L(t) \, dt
\]

\[
\Delta i_L = \frac{V_i}{4f_sL}(1 - 4D)D, \quad \frac{3}{4} \leq D < 1 \quad (6. \ c)
\]

In region R4,

\[
\Delta i_L = \frac{1}{L} \int_0^{T_s} v_L(t) \, dt
\]

\[
\Delta i_L = \frac{V_i}{4f_sL}(1 - 4D)D, \quad \frac{3}{2} \leq D < 1 \quad (6. \ d)
\]

The above equations 6. (a) (b) (c) & (d) gives the inductor current ripple in all four operating regions, where \(f_s \) is the switching frequency.

The inductor current ripple in the five level buck converter reduces by 16 times. Further, from this the value of inductor can be given by equation (7).

\[
L = \frac{V_i}{64f_sD_2\Delta i_L} \quad (7)
\]

2.4 Capacitors Voltage Ripple

Here in this section the voltage ripple across the capacitors C1, C2, C3 and C4 are analyzed. Voltage ripple can be calculated by considering the energy storing state or the energy transfer state of the capacitor and is given by equation (8).

\[
\Delta V_c = \frac{1}{C} \int_0^1 i_C(t) \, dt \quad (8)
\]

Where \(\Delta t_c \) is the charge or discharge time interval and \(i_C(t) \) is the instantaneous capacitor current. For the capacitor C1 and C2 the charge interval time is given by \(\Delta t_c = DT_s \) for \(D < 1/2 \) and \(\Delta t_c = (1 - D)T_s \) for \(D > 1/2 \) And the charging current of these capacitors are \(i_{C_1}(t) = I_L/2 \). By substituting these values in equation(8) the voltage ripple across the capacitors C1 and C2 are obtained as shown in equation(9. a) & (9. b).

For capacitor \(C_{1,2} \):

\[
\Delta V_{C_{1,2}} = \frac{1}{C_{1,2}} \int_0^{T_s/2} I_L \, dt \quad (9. a)
\]

For capacitor \(C_{1,2} \):

\[
\Delta V_{C_{1,2}} = \frac{1}{C_{1,2}} \int_0^{(1-D)T_s} I_L \, dt \quad (9. b)
\]

And likewise for the capacitors C3 and C4 the charge interval time is given by, \(\Delta t_c = DT_s \) for \(D < 1/4 \) \(\Delta t_c = 1/4 \) for \(1/4 < D < 3/4 \) \(\Delta t_c = (1 - D)T_s \) for \(3/4 < D < 1 \). The charging current of these capacitors are \(i_C(t) = I_L \). And by substituting these values in equation(8) the voltage ripple across the capacitors C3 and C4 are obtained as shown in equation(10. a), (10. b) & (10. c).

For capacitor \(C_{3,4} \):

\[
\Delta V_{C_{3,4}} = \frac{1}{C_{3,4}} \int_0^{T_s/4} I_L \, dt \quad (10. a)
\]

For capacitor \(C_{3,4} \):

\[
\Delta V_{C_{3,4}} = \frac{1}{C_{3,4}} \int_0^{(1-D)T_s} I_L \, dt \quad (10. b)
\]

For capacitor \(C_{3,4} \):

\[
\Delta V_{C_{3,4}} = \frac{1}{C_{3,4}} \int_0^{(1-D)T_s} I_L \, dt \quad (10. c)
\]
The maximum voltage ripple occurs for $D = 0.5$, for all capacitors, hence by assuming this maximum voltage ripple the capacitance expression can be derived as shown in below equation (11).

$$C = \frac{I_L}{4L \Delta V}$$ \hspace{1cm} (11)

3. Experimental results

To verify the operation and evaluate the performance of the proposed five level Buck converters, an 8-kW prototype was designed and the proposed topology was experimentally verified. The converter specifications are shown in Table 2. Due to the relation of the input-output voltage, the converter operates in the region R3. The selected components are shown in Table 3. Fig. 3 shows the open loop simulation model of five level buck converter.

Table 2: Five level Buck converter Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>750-V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>440-V</td>
</tr>
<tr>
<td>Output power</td>
<td>8-kW</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>25-kHz</td>
</tr>
<tr>
<td>Inductor current ripple</td>
<td>1.8-A</td>
</tr>
<tr>
<td>Capacitor voltage ripple</td>
<td>4.4-V</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>58.66</td>
</tr>
</tbody>
</table>

Table 3: Prototype Components

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Inductor</td>
<td>260µH</td>
</tr>
<tr>
<td>Capacitors C1 to C4 and Co</td>
<td>41 µF/1.3kV – film</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>600V-IGBT</td>
</tr>
</tbody>
</table>

Performance analysis of five-level buck converter was carried out with ±20% variations from the designed value of the inductor and capacitor, by keeping one parameter constant at a time. The variation in peak over shoot, settling time, delay time, rise time and peak time for varied capacitor and inductor values were plotted. The below Table 4 shows the tabulation of different parameter with constant capacitor value of 41 µF and ±20% variations from the designed value of inductor. Table 5 shows the tabulation of different parameters with constant inductor value of 260 µH and ±20% variations from the designed value of the capacitor.

<table>
<thead>
<tr>
<th>Table 4: Variation of Parameter With Constant Capacitor Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductor Value In (µH)</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>208</td>
</tr>
<tr>
<td>221</td>
</tr>
<tr>
<td>234</td>
</tr>
<tr>
<td>247</td>
</tr>
<tr>
<td>260</td>
</tr>
<tr>
<td>273</td>
</tr>
<tr>
<td>286</td>
</tr>
<tr>
<td>299</td>
</tr>
<tr>
<td>312</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5: Variation of Parameter With Constant Inductor Value</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Capacitor Value (µF)</th>
<th>Over Shoot (Mp) In Volts</th>
<th>Settling Time (ts) In Seconds</th>
<th>Delay Time (t_d) In Seconds</th>
<th>Rise Time (t_r) In Seconds</th>
<th>Peak Time (t_p) In Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>359.5</td>
<td>8.087e-3</td>
<td>9.605e-5</td>
<td>1.484e-4</td>
<td>2.937e-4</td>
</tr>
<tr>
<td>35</td>
<td>362.9</td>
<td>8.088e-3</td>
<td>9.880e-5</td>
<td>1.529e-4</td>
<td>3.069e-4</td>
</tr>
<tr>
<td>37</td>
<td>365.2</td>
<td>8.094e-3</td>
<td>1.015e-4</td>
<td>1.573e-4</td>
<td>3.033e-4</td>
</tr>
<tr>
<td>39</td>
<td>368.2</td>
<td>8.120e-3</td>
<td>1.042e-4</td>
<td>1.616e-4</td>
<td>3.100e-4</td>
</tr>
<tr>
<td>41</td>
<td>366.6</td>
<td>8.150e-3</td>
<td>1.069e-4</td>
<td>1.656e-4</td>
<td>3.172e-4</td>
</tr>
<tr>
<td>43</td>
<td>368.4</td>
<td>8.175e-3</td>
<td>1.096e-4</td>
<td>1.694e-4</td>
<td>3.348e-4</td>
</tr>
<tr>
<td>45</td>
<td>370.8</td>
<td>8.180e-3</td>
<td>1.122e-4</td>
<td>1.731e-4</td>
<td>3.408e-4</td>
</tr>
<tr>
<td>47</td>
<td>372.5</td>
<td>8.220e-3</td>
<td>1.148e-4</td>
<td>1.767e-4</td>
<td>3.449e-4</td>
</tr>
<tr>
<td>49</td>
<td>373.3</td>
<td>8.240e-3</td>
<td>1.174e-4</td>
<td>1.802e-4</td>
<td>3.484e-4</td>
</tr>
</tbody>
</table>
From Figures Fig 6. (a),(c),(d) and Fig 7. (a),(c),(d) the peak overshoot, delay time and Rise time varies linearly with changes in inductor and capacitor value. But it be observed that in the Fig 6. (b),(e) and Fig 7. (b),(e) due to the variation of inductance and capacitance there is a significant effect on the settling time and the peak time of the converter waveform.

4. Conclusions

A nonisolated five level Buck converter for high voltage application was proposed and structure was analyzed in detail in this paper. The advantages of this converter are absence of a transformer, a reduced number of components, a reduced volume of output filter and low voltage across the semiconductors.

The proposed converter is designed and simulated. The converter was designed to supply a load at 440V at 8000W with duty ratio of 0.586. The output waveforms obtained from simulations confirms the better performance of the proposed converter. Analysis are carried out by varying the ±20% of the capacitor and inductor designed value. Further future work will concentrate on designing the closed lopp controller for the efficient operation of the proposed converter.

References