Real Time Abnormal Situation Detection Based On Crowd Motion Characteristics

Rukkumani V1, Kiruthika B2

Assistant Professor, Department of Electronics and Instrumentation Engineering,
Sri Ramakrishna Engineering College, Coimbatore, India1
Student, Department of Control and Instrumentation Engineering,
Sri Ramakrishna Engineering College, Coimbatore, India2

Abstract

The ability to detect unusual or abnormal event is one of the most important issue to be addressed in the development of intelligent surveillance systems. In particular, abnormal situation detection in crowded scenes is a challenging problem due to the potential complexity of a situation. As network video technology has improved, the cost of installing a surveillance system has dropped significantly, leading to an exponential increase in the use of security cameras. This paper aims at detecting the abnormal event of people at crowded scenes on the road side. Image processing system is capable of identifying human that can be used for surveillance applications to monitor the unusual human behavior. The unusual behavior of the human can be detected based on comparison of sequence of frame for a certain time period. The first few frames of the video are used to estimate the background image and the pixels that represent the people are separated from the pixels that represent the background. Pixel that represents the people is detected as abnormal situation image and that image is converted into gray scale image. From the gray scale image particular area is extracted. The moving persons can be tracked from the bounding boxes around each person.

Keywords: Comparison of frames, Object identification, Extraction of Particular Area, Object Detection and Tracking.

1. Introduction

A typical video surveillance system employs a number of networked cameras and with the development of new technology. The input is given as video and it is converted into sequence of frames. Auto correlation is the technique used to compare between two frames of images. The detected abnormal rgb image is converted into gray scale image. A gray scale digital image is an image in which the value of each pixel is single sample that carries only intensity information. This grayscale image is also known as black and white, which is composed exclusively of shades of gray varying from black at the weakest intensity to white at the strongest. rgb to gray scale conversion of image will eliminate the hue and saturation information while retaining the luminance.

2. Related Work

To classify abnormal events in crowds, normal behaviors of frame is extracted and deviations from those frames are detected and tracked. The abnormal situation is like car accident on road side, overcrowd on escalator, shopping malls.

In2 Spatio-temporal grid-based framework is used to deal with the complexity of structured and unstructured motion flows that can effectively group optical flows in the field of view into crowds. Measures motion features including the speed and direction of moving objects based on a spatio-temporal grid-based approach for flow representation. Crowd flux analysis to detect abnormal events in crowded scenes using the crowd motion characteristics including the particle energy and the motion directions.

A novel unsupervised learning framework3 to model activities and interactions in crowded and complicated scenes. Three hierarchical Bayesian models were used: the Latent Dirichlet Allocation (LDA) mixture model, the
Hierarchical Dirichlet Processes (HDP) mixture model, and the Dual Hierarchical Dirichlet Processes (Dual-HDP) model. Directly using existing LDA and HDP models, only moving pixels can be clustered into atomic activities. These models can cluster both moving pixels and video clips into atomic activities and into interactions.

A new technique of crowded objects motion analysis (COMA) to deal with crowded objects scenes which consists of three parts: background removal, foreground segmentation and crowded objects density estimation. A combination approach of Lucas-Kanade optical flow and Gaussian background subtraction is proposed to obtain optimal foregrounds.

3. Process Methodology

The input video is converted into the sequence of frames. Original image that is without any abnormal event is extracted and it is compared with the other sequence of frames using auto correlation technique. Fig 3.1 illustrates the process flow diagram of the abnormal event detection. Initially the abnormal event frame is detected and converted into grayscale image. Processing of rgb image takes long time to process. A grayscale image is an image in which the value of each pixel is single sample that carries only intensity information. This grayscale image is also known as black and white, which is composed exclusively of shades of gray varying from black at the weakest intensity to white at the strongest. rgb to grayscale conversion of image will eliminate the hue and saturation information while retaining the luminance.

From the grayscale image particular area is extracted to detect the abnormal event on the particular area. Feature extraction is the special form of dimensional reduction. Because processing large amount of data generally requires large amount of memory and also takes more time to process. So the grayscale image is converted into set of features.

Boundary detection is used to assign border for moving persons in the extracted image. It assigns unique color for each person to identify moving person in that images. From the boundary detected image abnormal event is obtained and enhanced.

4. Model Description

The abnormal event of people during crowd on road side can be detected and tracked using following block diagram fig 4.1. This block detects and tracks people in a video sequence with a stationary background using the following process:

- Use the first few frames of the video to estimate the background image.
- Separate the pixels that represent the people from the pixels that represent the background.
- Group pixels that represent individual people together and calculate the appropriate bounding box for each person.
- Match the people in the current frame with those in the previous frame by comparing the bounding boxes between frames.

Fig 4.1: Block Diagram of Abnormal Situation Detection

The function of each block in the above figure is explained below. From the multimedia file, video is given as the input. Data type is given as infinity. Multimedia files can contain audio, video or audio and video data.

4.1 Background Estimator Subsystem

Under each block in the above block diagram has its subsystem. Background estimator block is used to estimate a background without any abnormal situation on the image. From the sequence of frames stationary background image is extracted and send that output to the next block.
The subsystem block consists of median, buffer, reshape blocks. Initially the input is given as triggered input to the subsystem. Then it is reshaped by changing the dimensions of the input signal to Row vector (2-D). The output of row vector is given to the buffer block which converts scalar samples to a frame output at a lower rate. Median block is used after the buffer block. It is used to compute the median value along the specified dimension of the input or across time (running median). The output from the median is given to frame conversion block. It is used to set sampling mode of the output signal.

4.2 Segmentation Subsystem

The Segmentation subsystem, the Auto threshold block uses the difference in pixel values between the normalized input image and the background image to determine which pixels correspond to the moving objects in the scene. Initially the image with foreground and background is given to the luminance block to reduce the intensity of the image. Then Abs block is used to set the accurate value of the image. Next to that block is auto threshold block which is used to convert the intensity of the image to binary image.

From the auto threshold block EMetric output is given to the compare to constant2 block which is to determine how the signal compares with the constant signal. The BW output is given to the overwrite value block to overwrite selected portion of the input matrix to either submatrix or full diagonal. Then the output of overwrite and comparison block is given to the switch. The switch has 2 is control port where 1 and 3 are data ports. The switch pass through input 1 when input 2 satisfies the selected criterion otherwise pass through input 3. Auto threshold block converts an intensity image to binary image. This uses otsu’s method which determines the threshold by splitting the histogram of the input image.

4.3 Detection Subsystem

The detection block it will convert the background of gray scale image black and white color and detect the moving persons during the abnormal situation on road side. The detection block contains the subsystem, in which the close block merges object pixels that are close to each other to create blobs. For example, pixels that represent a portion of a person’s body are grouped together. Next, the blob analysis block calculates the bounding boxes of these blobs. In the final step, the detection subsystem merges the individual bounding boxes so that each person is enclosed by a single bounding box.

The image is given to the merge target pieces into blobs block which is used to perform morphological closing on an intensity or binary image. Uses the Neighborhood or structuring element parameter to define the neighborhood or structuring element that the block applies to the image. The output of merge block is given to the blob analysis block which calculates the bounding boxes of these blobs. The output from the blob is given directly to the merge blob block and also to the probe block detects whether the signal is complex or not. Blob analysis is used to compute the statistics for connected regions in the binary image. Selector block is connected next to the probe to select or reorder the specified elements of input. The input to the threshold and enable in merge blob is constant. The merge blobs belonging to the same target block merges individual bounding boxes so that each person is enclosed by single bounding box.

4.4 Tracking

The tracking block uses gray scale image directly to track the moving persons during the abnormal situation. In the Tracking subsystem, the Kalman Filter block uses the locations of the bounding boxes detected in the previous frames to predict the locations of these bounding boxes in the current frame. To determine the locations of specific people from one frame to another, it compares the predicted locations of the bounding boxes with the detected locations. This enables to assign a unique color to each person. The tracking system also uses the Kalman Filter block to reduce the effect of noise in the detection of the bounding box locations.

The tracking block uses gray scale image directly to track the moving persons during the abnormal situation. In the Tracking subsystem, the Kalman Filter block uses the locations of the bounding boxes detected in the previous frames to predict the locations of these bounding boxes in the current frame. To determine the locations of specific people from one frame to another, it compares the predicted locations of the bounding boxes with the detected locations. This enables to assign a unique color to each person. The tracking system also uses the Kalman Filter block to reduce the effect of noise in the detection of the bounding box locations.

4.4.1 Kalman Filter

The most overlap target image output from the target block is given to the recorder which reorders the current target to match order from the previous sample time. The Kalman filter is a recursive predictive filter that is based on the use of state techniques and recursive algorithms. It estimates the state of a dynamic system. This dynamic system can be distributed by some noise, mostly assumed as white noise. To improve the estimated state the Kalman filter uses measurements that are related to the state but distributed as well.

Thus the Kalman filter consists of two steps.

1. Prediction
2. Correction
This block uses previously estimated state to predict the current state. It can also use the current measurement and the predicted state to estimate the current state value. All the filters have the same transition matrix, measurement matrix, initial conditions and noise covariance but their state, measurement, enable and MSE signals are unique.

In the first step the state is predicted with the dynamic model. In the second step it is corrected with the observation model so that the error covariance of the estimator is minimized. In this sense it is said to be an optimal estimator. This procedure is repeated for each time step as initial value. Therefore the Kalman filter is called a recursive filter. The basic components of Kalman filter are the state vector, the dynamic model and the observation model.

4.5 Display System

The Detected window shows, the people in the scene are surrounded by bounding boxes. The result assigns each bounding box a color based on the order that each person is detected. For example, the first person detected has a red bounding box and the second person detected has a green box. The color of these boxes changes because the people in the scene are not tracked. In the Tracked window, each person has a unique bounding box color for the duration of the video.

The edit parameters block is used to plot the coordinates of the bounding boxes over time. The coordinates of each bounding box are defined by the row and column location of its upper-left corner as well as its width and height. Accordingly, each person in the video corresponds to four lines in the plot. Because the Kalman Filter block reduces noise, the bounding box positions calculated by the Tracking subsystem have smoother trajectories than those calculated by the Detection subsystem.

Uses the target tracking threshold parameter to specify the maximum distance a target can travel between two consecutive frames. The distance is defined as \(\text{Distance} = \frac{\text{abs}(2(c1-c2)+w1+w2)+\text{abs}(2(r1-r2)+h1+h2))}{h1+h2} \). \(c \) and \(r \) are the coordinates of the top-left corner of the target and \(w \) and \(h \) are its width and height.

5. Results

Based on the simulation, results were studied and analyzed. The results are taken from two different videos. From the sequence of frames a stationary background image is extracted and compared with the remaining frames. The stationary background image is shown below in fig 5.1.

Fig 5.1 Stationary Background image on road

This stationary background image is compared with the other sequence of frames and abnormal situation image is detected in below fig 5.3.

Fig 5.2 Stationary background image in confidential room

This stationary background image is compared with the other sequence of frames and abnormal situation image is detected in below fig 5.3.

Fig 5.3 Abnormal situation detection

Processing the rgb image of abnormal situation detection takes more time to process and large memory is required to store the pixels. So rgb image is converted into gray scale image as shown in the fig 5.4.

Fig 5.4 Converted gray scale image

From the gray scale image particular area is extracted i.e abnormal situation area in the below fig 5.5.

Fig 5.5 Feature Extraction image
People in the extracted image are detected and tracked using bounding boxes to each person in the image. In the detected image there is high noise present as shown below in fig 5.6.

Fig 5.6 Detected image on road side

To remove the high noise present in the detected image Kalman filter is used and track the persons in that particular image. The tracked image is shown in the below fig 5.8.

Fig 5.8 Tracked image on road side

Acknowledgement

First and foremost I place this project work on the feet of GOD almighty who is the power of strength in each step of progress towards the successful completion of phase I project.

Words are inadequate in offering my thanks to Mrs.V.Rukumani, M.E., Assistant Professor(Sr.G), Department of EIE-UG, for her encouragement and cooperation in carrying out the project work. Finally, I would like to express my heartfelt thanks to my beloved parents for their blessings, my friends, teaching and non-teaching staffs of my department for their help and wishes for the successful completion of this project.

References

