Adolescents’ Exercise Behavior and Cognitive and Behavioral Variables

Ji-Hang Lee¹ and Young-Ho Kim²

¹College of Sport Science, SungKyunKwan University, SuWon, KyeongGi, Korea
²Department of Sport Science, Seoul National University of Science and Technology, Seoul, Korea

Abstract
The purpose of the study was to identify the differences in exercise stages among adolescents and in cognitive and behavioral variables by the exercise stages. A total of 671 adolescents randomly selected from junior high and high schools in Seoul were surveyed. Two Korean-version questionnaires were used to identify the stages of exercise behavior and the processes of change construct of adolescents: Stage of Exercise Behavior Change Questionnaire, and Processes of Change Questionnaire. Results indicated that exercise pattern of Korean adolescents were different by each stage of exercise behavior. Female adolescents were more likely to be in the contemplation stage, whereas males were more likely to be in the maintenance. In addition, significant differences were revealed in use of processes of change constructs through stages of exercise behavior. The use of cognitive and behavioral strategies increased from precontemplation through maintenance. This study provides some insights into the physical activity habits and the TTM components of increasing physical activity levels in the adolescent Korean populations.

Keywords: Exercise behavior, Adolescent, Cognitive variable, Behavioral variable

I. Introduction
Despite the dissemination of health information promoting the benefits of regular participation in physical activity, a large volume of studies indicated that the majority of adolescents around the world either engage in exercise behavior on an infrequent basis or are completely sedentary [1,2]. According to one study, 16% of adolescents responded that they never exercised. However, in this study, considering the fact that about 34% of adolescents participated in physical activity once per month, a lack of exercise in the adolescents is a crucial factor that might adversely affect their health [3].

In this regard, one model that has achieved widespread attention from researchers and practitioners regarding a variety of health-related behavior, including exercise, has been the Transtheoretical Model (TTM) [4]. The TTM consisted of five stages of exercise behavior change: (1) precontemplation (no intention to change behavior in next 6 months), (2) contemplation (intention to change behavior within 6 months), (3) preparation (small inconsistent changes), (4) action (active involvement in behavior for less than 6 months), and (5) maintenance (sustained behavior change for at least 6 months) [5].

Processes of change, the most understudied tenant of the TTM, are overt and covert activities that individuals utilize to modify their behavior [4]. The 10 processes are grouped into two high-order factors representing cognitive (i.e., conscious raising, dramatic relief, self-revaluation, environmental reevaluation, and self-liberation) and behavioral (i.e., social liberation, counter-conditioning, stimulus control, reinforcement management, and helping relationships) processes. Cognitive processes obtains information by an individual’s own actions, meanwhile information in behavioral processes is obtained from environmental events. People at different stages of change are hypothesized to use distinct processes of change. In the exercise domain, cognitive processes have been found to peak in the contemplation stage and behavioral processes have been shown to steadily increase from precontemplation to action, at which point they level off [6].

In this regard, exercise behavior of the adolescents in the different cultures has frequently been identified on a basis of the TTM. However, the same level of research has not been focused on the Korean adolescent populations. The purpose of the study was to identify the differences in exercise stages among adolescents and in cognitive and behavioral variables by the exercise stages.
2. Methods

2.1. Participants

750 students (male: 400, female: 350) ranged from 7th to 11th grade who attended junior high and high schools in Seoul, Korea were asked to participate in a survey designed to assess the stage of exercise behavior and processes of change constructs. Out of a possible 750, 671 students (male: 357, female: 314) were invited to participate in the study; 89.5% gave their consent and completed the survey form. Only 10.5% of the subjects declined participation. The non-participants were not significantly different in age or gender from students who participated. The subjects were selected by a random sampling from six schools, geographically located in the northern areas of Seoul. All students in the age cohort were 13-18 yrs (M=15.3 yrs).

2.2. Measures

For stage of exercise behavior change, Stage of Exercise Behavior Change Questionnaire, developed by Marcus, Selby, Niaura, and Rossi was translated into Korean, and used in the study [5]. In this questionnaire, stage of exercise behavior change was assessed using 5-item, dichotomous scale (yes/no) related to regular exercise behavior and intentions. This questionnaire measures frequency of regular exercise and does not assess vigorous and/or moderate physical activity separately. Individuals were categorized into one of five stages of exercise behavior change described previously. In addition, in a pilot stage test-retest reliability measures were conducted as a measure of instrument stability, and obtained a reliability of .85.

Processes of Change Questionnaire developed by Nigg, Norman, Rossi, and Benisovich was revised for the Korean version, and applied to assess processes of exercise behavior change [6]. In this revised questionnaire, individuals were asked to recall the past month and to rate the frequency of occurrence of each item, on a 5-point Likert-type scale (ranging from 1, "never" to 5, "repeatedly"), how frequently each of the processes were used. Cronbach's coefficient alpha was calculated as a measure of internal consistency for the scale, and alpha levels ranged from .70 to .87. In addition, test-retest reliability measures were performed as a measure of instrument stability, and obtained reliabilities from .69 to .89.

3. Results

3.1. Stages of exercise behavior change

Figure 1 showed stage of exercise behavior change distribution overall and as a function of gender. The following stages of exercise behavior emerged overall: precontemplation (n=168, 25.2%), contemplation (n=179, 27.3%), preparation (n=93, 13.7%), action (n=108, 15.8%), and maintenance (n=126, 18.0%). Especially, considering the fact that overall 66.2% of the...
sample reported being inactive (precontemplation or contemplation) or exercise irregularly (preparation), a lack of exercise in the adolescents is a crucial factor that might adversely affect their health. Female adolescents were more likely to be in the contemplation stage \((\chi^2 = 113.14, df = 4, p<.001)\), whereas males were more likely to be in the maintenance stage \((\chi^2 = 129.22, df = 4, p<.001)\).

Table 1. Differences in Cognitive and Behavioral Variables by Exercise Stages

<table>
<thead>
<tr>
<th>Process of Change</th>
<th>Stages of Exercise Behavior</th>
<th>PC</th>
<th>C</th>
<th>P</th>
<th>A</th>
<th>M</th>
<th>F (4,666)</th>
<th>(\eta^2)</th>
<th>Turkey’s HSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conscious raising(^a)</td>
<td></td>
<td>2.46</td>
<td>2.46</td>
<td>2.46</td>
<td>2.69</td>
<td>2.89</td>
<td>4.55***</td>
<td>.21</td>
<td>PC,C,P<M</td>
</tr>
<tr>
<td></td>
<td>(1.02)</td>
<td>(.99)</td>
<td>(.91)</td>
<td>(1.00)</td>
<td>(1.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dramatic relief(^b)</td>
<td></td>
<td>2.53</td>
<td>2.55</td>
<td>2.59</td>
<td>2.69</td>
<td>2.76</td>
<td>1.43</td>
<td>.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.98)</td>
<td>(.95)</td>
<td>(.88)</td>
<td>(.86)</td>
<td>(.91)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental reevaluation(^b)</td>
<td></td>
<td>2.53</td>
<td>2.54</td>
<td>2.54</td>
<td>2.80</td>
<td>2.92</td>
<td>2.49*</td>
<td>.12</td>
<td>PC,C,P<A,M</td>
</tr>
<tr>
<td></td>
<td>(1.07)</td>
<td>(1.02)</td>
<td>(.89)</td>
<td>(1.00)</td>
<td>(1.02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self reevaluation(^c)</td>
<td></td>
<td>3.21</td>
<td>3.19</td>
<td>3.20</td>
<td>3.40</td>
<td>3.46</td>
<td>1.83</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.03)</td>
<td>(.98)</td>
<td>(1.04)</td>
<td>(.96)</td>
<td>(.95)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helping relationships(^a)</td>
<td></td>
<td>2.64</td>
<td>2.74</td>
<td>2.84</td>
<td>3.13</td>
<td>3.15</td>
<td>3.76**</td>
<td>.22</td>
<td>PC,C,P<A,M</td>
</tr>
<tr>
<td></td>
<td>(1.20)</td>
<td>(1.21)</td>
<td>(1.22)</td>
<td>(1.02)</td>
<td>(1.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforcement management(^b)</td>
<td></td>
<td>3.06</td>
<td>3.14</td>
<td>3.14</td>
<td>3.38</td>
<td>3.41</td>
<td>2.66*</td>
<td>.16</td>
<td>PC,C,P<A,M</td>
</tr>
<tr>
<td></td>
<td>(1.00)</td>
<td>(1.01)</td>
<td>(1.11)</td>
<td>(1.05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulus control(^b)</td>
<td></td>
<td>2.21</td>
<td>2.38</td>
<td>2.41</td>
<td>2.68</td>
<td>2.76</td>
<td>2.52*</td>
<td>.15</td>
<td>PC,C,P=M</td>
</tr>
<tr>
<td></td>
<td>(1.10)</td>
<td>(1.07)</td>
<td>(.90)</td>
<td>(1.02)</td>
<td>(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter-conditioning(^a)</td>
<td></td>
<td>2.30</td>
<td>2.37</td>
<td>2.38</td>
<td>2.69</td>
<td>2.82</td>
<td>3.52**</td>
<td>.21</td>
<td>PC,C,P<A,M</td>
</tr>
<tr>
<td></td>
<td>(1.03)</td>
<td>(.98)</td>
<td>(.95)</td>
<td>(.82)</td>
<td>(1.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Large effect size; \(^b\)Medium effect size; \(^c\)Small effect size

\(^1\)Mean differences for the Turkey HSD pairwise comparisons \((p<.05)\).

Parentheses are standard deviations.

PC: Precontemplation; C: Contemplation; P: Preparation; A: Action; M: Maintenance.

3.2. Cognitive and behavioral variables by stages of exercise behavior

Table 1 indicated that adolescents in precontemplation significantly less used most of 8 processes of change than those in other stages of exercise behavior. In the cognitive processes conscious raising \([F(4, 666)=4.55, p<.001]\) and environmental reevaluation \([F(4, 666)=2.49, p<.05]\) statistically differentiated across stages of exercise behavior. Turkey’s post hoc tests revealed such mean differences in conscious raising and environmental reevaluation emerged between adolescents in precontemplation, contemplation, and preparation and those in maintenance. A more stable pattern of process of change use emerged for the behavioral strategies. Adolescents in precontemplation and contemplation used these processes less than those in more advanced stages of change. Especially, adolescents in the action and maintenance stages used these processes more habitually as compared with those in preparation. Using the criteria \((\eta^2)\) a large effect size observed for conscious raising, helping relationships, and counter-conditioning. Medium effect sizes were noted for environmental reevaluation, reinforcement management, and stimulus control. Dramatic relief and self reevaluation yielded large effect sizes.

4. Discussion

The purpose of the study was to identify the differences in exercise stages among adolescents and in cognitive and behavioral variables by the exercise stages. A small number of studies have applied the TTM to examine stage of exercise behavior change among adolescents. Moreover, available data based on the TTM have been mostly conducted in the Western countries. However, the same level of research has not been focused on the Korean adolescent populations. The study identified that physical inactivity of Korean adolescents could seriously affect their health status in the future, considering the
findings that overall 66.2% of the sample reported being inactive (precontemplation or contemplation) or exercise irregularly (preparation). These findings agree with previous studies [7]. The high rates of physical inactivity among Korean adolescents might be extensively caused by the social and environmental limitations such as a lack of available facilities and times for exercise, a social context neglecting exercise and Physical Education, and excessive schoolwork due to dominance of academic-centered curriculum.

In addition, male adolescents showed a high proportion in the maintenance stage, whereas a high proportion of females were in contemplation as compared with their counterparts. This finding is not surprising in light of the consistent relationship between gender and exercise behavior. There was approximately a 21% difference in the proportion of male and female adolescents in the maintenance stage and 22% in contemplation. This finding was supported by one study, demonstrating that males were significantly more likely to be in the action or maintenance stages compared with their female counterparts [8].

The present study showed significant differences in the use of cognitive and behavioral processes of change, with a clear indication of increased use of processes associated with advancing stage. These findings are similar to those found by previous studies [6]. The use of cognitive strategies increased from precontemplation through maintenance. As demonstrated by the Turkey’s post hoc tests, significant differences across stages of exercise behavior were observed in conscious raising and environmental reevaluation. In the cognitive processes, conscious raising was the best discriminator among all stages of exercise behavior. This finding indicates that many adolescents seek new information about exercise. In addition, adolescents in precontemplation, contemplation and preparation used environmental reevaluation less than those in action and maintenance. This result can be interpreted that adolescents who have no intention to initiate exercise or exercise irregularly give little thought to how their inactivity affects their social and environment.

For the behavioral strategies, the overall sub variables of the behavioral processes seemed to be more stable to exercise behavior change, and increased from precontemplation through maintenance. These findings indicate that behavioral strategies are important in exercise adoption and maintenance. All four strategies had statistically significant effect sizes, especially helping relationships and counter-conditioning showed the high effect sizes. This finding implies that as adolescents become more active, they seem to have more significant others who encourage them to consistently maintain exercise habits, and are able to substitute sedentary behaviors more easily with physical activity.

There are a number of issues that need to be considered in understanding the implications of the findings obtained from the present study. This study adopted only gender as the demographic factors which can possibly affect exercise behavior change of the adolescents. Hence, it cannot identify the potential influence of other demographic factors such as age, family income and parent education on adolescents’ exercise behavior change. The primary focus of this study was to explore the stages of exercise behavior in the Korean adolescents and the possible impact of processes of change constructs on the exercise stage. Therefore, interaction effects between stages of exercise behavior and demographic factors have not been considered.

A potential limitation is that the behavioral and psychological questionnaires used in the study rely on the self-report format. The results, therefore, may be subject to self-report bias, resulting in some unspecified amount of misclassification as to the respondent's actual state of readiness. However, population-based interventions must rely on self-report to a large extent since there is frequently no direct contact between the subject and the investigator. The accuracy of self-report has been extensively investigated in the area of health-related behaviors, where it has been found to be very accurate [9,10].

In spite of such methodological limitations, the findings of this study offer the first evidence suggesting the possibility of TTM to explaining Korean adolescents' exercise behavior. This study provides much needed information about Korean adolescents in terms of their exercise behavior and aspects of the processes of change constructs which relate directly to exercise behavior change. Furthermore, the present study provides starting points for interventions aimed at increasing physical activity levels, and a baseline level from which to evaluate these interventions.
References

Ji-Hang Lee is associate professor in SungKyunKwan University in Korea. Dr. Lee earned his Ph.D. in University of Oregon. His research interest in neuroscience and motor behavior.

Young-Ho Kim is professor in Seoul National University of Science and Technology. Dr. Kim earned his Ph.D. in University of Wollongong. His research interest is exercise behavior and psychological variables.