Biomedical Image Fusion in Wavelet Domain; A Brief Survey

SUJTH.M.V¹, SHAFEEN.K.M², TAMJID ALI ASHARAF U³, SAJIDH CT⁴, SAYOOJ MOHAN MT⁵, RENJITH V RAVI⁶

UG Students¹-⁵, Department of ECE, MEA ENGINEERING COLLEGE, KERALA, INDIA
Asst. Professor⁶, Department of ECE, MEA ENGINEERING COLLEGE, KERALA, INDIA

Abstract
Medical image fusion has been a very useful tool for detecting the tumors in the earliest. MRI (magnetic resonance imaging) and CT (computed tomography) is a very useful tool in such a diagnosis method. Since MRI highlight soft tissue of the body and CT highlight the hard tissue of the body their fusion will be a useful. So this paper aims to find the different fusion algorithms for the fusion of MRI and CT there by medical practitioner does not have to perform this operation mentally inside their brain. Here Different wavelet based fusion and their combination algorithms for fusion and also how the fused image evaluation is done which parameters are considered.

Keywords: Wavelet, fusion rule, MRI, CT, Mutual Information, RMSE, PSNR

1. INTRODUCTION

As Day by day the number of person suffering from cancer increases more and more people are day by day is found to have the diseases. The MRI and CT images are very common technology in every where even in developing country so the people under going both these scanning also increased. Medical practioners now a day’s suggest people to undergo both the scanning technology MRI and CT they are different technology highlighting different thing one highlights soft tissue other the hard so in order for better diagnosis if the images are combined this will provide more information to the medical practioners for diagnosis as well as planning their treatment. Recent studies indicates that the MRI and CT image fusion will in finding the GTV(gross tumor volume) as well as CTV(clinical target volume). The studies say that the fused image will give compensate each other images weakness and thereby reducing miss detection.

Image fusion is one of the latest, better and improved diagnostic techniques in biomedical image processing today. This technology image fusion has made a clear difference in patient care by improving diagnosis and treatment methods. Although image fusion can have different purposes, the most important aim of fusion is combine the complementary information of the images or image Sharpening. Mainly, medical image fusion try to solve the Issue of where there is no single modality provides both anatomical and functional Information. If the Fusion had only considered low frequency component which does not give information on edges, corners of the image so the fusion will be inaccurate, As CT gives more information on the boundary effect and MRI gives more information on tissue effect. Now this work is aimed to find the best fusion method using wavelet transform methods using different wavelet and different fusion rule. To take the wavelet transform of image there are different wavelets are available like Haar, Daubechies ,Morlet, Mexican Hat, Coiflet, Symlets and so on. The objective is to fuse the images using them and using different fusion rule like Maxima, Minima, Random, Mean rules and to find Parameter corresponding to each of them. And to implement the best algorithm among in an application.
2 WAVELET BASED FUSION

Wavelets are specified periodic oscillatory functions with no average value. The term “wavelet” as it implies means a small wave, which has short period and fast deceleration onto zero, in both direction of its amplitude. It has definite energy and hence are used for analysis of transient signal. Their properties like good localization and irregularity make them better base for analysis of signals with discontinuities. Wavelet decomposition is widely in image processing as it give information on both spatial and frequency domain.

A Discrete wavelet transform (DWT) is any wavelet transform in which the wavelets are sampled discretely. Comparing with other wavelet transforms, advantage it has over Fourier transforms is temporal resolution that is it captures both frequency and location information. The Discrete Wavelet Transform was developed to apply the wavelet transform to the digital world. It is a mathematical tool for decomposing an image hierarchically. Due to its strong spatial support, the DWT provides a compact representation of the frequency component of its signal. The wavelet can be defined by using two functions, the scaling function $\varphi(t)$, known as “father wavelet” and the wavelet function $\psi(t)$ or “mother wavelet”. Combining this obtains a daughter wavelet. The scaling function is given as

$$\varphi(t) = \sqrt{2} \sum_k h(k) \varphi(2t - k)$$ \hspace{1cm} (1)

The wavelet function is given as

$$\psi(t) = \sqrt{2} \sum_k g(k) \varphi(2t - k)$$ \hspace{1cm} (2)

There is a finite set of coefficients $h[k]$. Once these coefficients are found, allowing us to design the lowpass filter, then the highpass filter coefficients are easy to find.

DWT decomposes a image into frequency sub-band at different scale from which it can be perfectly reconstructed. The signal into high and low frequency parts is split by the DWT. The low frequency part contains coarse information of signal whereas high frequency part contains information about the edge components.

Image fusion is implemented by two dimensional discrete wavelet transform. The resolution of an image is changed by filtering operations of wavelet transform. And the scale is changed by sampling. The DWT analyses the image at different frequency bands with different resolutions by decomposing the image into approximation and detail coefficients.

Wavelet separately filters and samples the 2-D image in both vertical and horizontal directions (separable filter bank). The input image is $I(x, y)$ filtered by low pass filter L and high pass filter H in horizontal direction and then down sampled by a factor of two (keeping the alternative sample) to create the coefficient matrices $IL(x, y)$ and $IH(x, y)$. The coefficient matrices $IL(x, y)$ and $IH(x, y)$ are both low pass and high pass filtered in vertical direction and down sampled by a factor of two to create sub images $ILL(x, y)$, $ILH(x, y)$, $IHL(x, y)$ and $IHH(x, y)$.

![Figure 1: Wavelet Decomposition](image-url)
decomposition. It could be measured as smoothed and subsampled version of the source image \(I(\mathbf{x}, \mathbf{y}) \). It represents the approximation of source image. \(I(\mathbf{x}, \mathbf{y}) \), \(ILH(\mathbf{x}, \mathbf{y}) \), \(IHL(\mathbf{x}, \mathbf{y}) \), and \(IHH(\mathbf{x}, \mathbf{y}) \), are the complete sub images which contain directional (horizontal, vertical and diagonal) information of the source image \(I(\mathbf{x}, \mathbf{y}) \), due to spatial orientation.

Inverse 2-D wavelet transform is used to reconstruct the image \(I(\mathbf{x}, \mathbf{y}) \), from sub images \(ILL(\mathbf{x}, \mathbf{y}) \), \(ILH(\mathbf{x}, \mathbf{y}) \), \(IHL(\mathbf{x}, \mathbf{y}) \), and \(IHH(\mathbf{x}, \mathbf{y}) \) as shown in Fig. 1. This involves column up sampling (inserting zeros between samples) and filtering using low pass \(L \) and high pass filter \(H \) for each sub images.

3 FUSION RULES

We can select different fusion rules for the fusion of the images which we obtain from the wavelet decomposition. Let the image MRI and CT be represented by two matrices \(M, N \) of the same order. Then first fusion rule is maximum in which the fused image is obtained as

\[
F = (M*Q) + (N*~Q)
\]

(3)

Where \(Q \) is absolute value of matrix \(M \). Second fusion rule is minimum in which fused image

\[
F = (M*Q) + (N*~Q)
\]

(4)

where \(Q \) is absolute value of matrix \(N \). Third fusion rule is mean in which

\[
F = (M+N) / 2.
\]

(5)

The fourth fusion rule used is random fusion in which again operation performed is

\[
F = (M*Q) + (N*~Q)
\]

(6)

but \(Q \) is a Boolean random matrix. These are the some useful fusion rule available which will be useful for the fusion algorithm proposed.

4 LITERATURE SURVEY

In paper [1], the author had done an Analysis of CT and MRI Image Fusion using Wavelet Transform. Now this paper demonstrates the application of wavelet in the multimodality wavelet transform. The paper says that simplest method is to take average of two images pixel by pixel it leads to reduced contrast others methods proposed are intensity hue saturation PCA, synthetic variable. Here wavelet transform are chosen because multi resolution transform provide more information on the contrast changes it is much of more interest. It has two ways pyramidal transform and wavelet transform. The paper has considered five wavelet families namely Haar, Daubechies (db), Symlets, Coiflets and BiorSplines for fusing CT and MRI medical images. In this paper different fusion rules were used mean rule, maximum rule, minimum rule and random rule. The parameter considered for the work to see whether the fused image has more information or not is by checking the value of parameter here the parameter is RMSE and PSNR. The minimum value of RMSE the better the fusion and PSNR value should be maximum higher. The paper describes wavelet transform as wavelet transform is a mathematical tool that can detect local feature in a signal process. It can be used to decompose 2D signal such as 2D gray scale image into different resolution levels for multi resolution analysis. Wavelet transform provide a frame work of signal decomposed each section consisting of lower or higher frequency band. It is divided into two continuous and discrete transform. The wavelet transform is invertible and non redundant and
basic idea behind wavelet is to represent the signal as superposition of wavelet.

R.J. Sapkal and S.M. Kulkarni describes image fusion in [2] as a technique that integrates complementary information from multiple images such that the fused image is more suitable for processing tasks. It says that CT image the brightness is related to the tissue density so bones are seen some soft tissue cannot be found in those where as in MRI image the brightness is related to hydrogen atom in the tissue so soft tissue has higher brightness bones are not highlighted. In this paper describe image registration as a preprocess in which corresponding pixel of image to be aligned properly for better fusion of the images. It also says that wavelets are finite duration oscillatory function with zero average value. It says wavelets are described using two functions father wavelet and mother wavelet. Mother wavelet is treated as HPF in DWT and scaling function as LPF. However paper does not say which wavelet is used or the parameters considered.

Different techniques for fusion of multimodality images and the resultant images are analyzed using different quantitative measure in [3]. Images are fused together using fusion techniques namely Redundancy Discrete Wavelet Transform (RDWT), Mamdani type minimum-sum-mean-of-maximum (MIM-SUM-MOM). The resultant is analyzed using quantitative metrics such as Entropy (EN), Standard Deviation (SD), and Mutual Information (MI). Now in this paper wavelet based analysis is Redundancy Discrete Wavelet Transform (RDWT) preserves both edge and component information this method also helps reduce shift variance in the fused image. Mamdani type MIM-SUM-MOM provides better texture feature in the fused image and also enhance the features of both images. In this paper for redundancy transform haar wavelet is used for transformation purpose.

Fusion of MRI and CT images with Double Density Dual tree DWT this paper[4] proposes a method of the transformation technique. In this paper the fusion of mri and ct image is done using two methods lifting wavelet transform and double density dual tree DWT. The paper says that normally for fusion only low frequency components are considered which does not give information on edges or corners of the image so the fusion will be inaccurate. So CT as it gives more information on the boundary effected and MRI gives more information on tissues affected. So the paper proposes a new method for fusion However this method was found not efficient as other methods from the RMSE and Entropy value found its was found lifting wavelet transform is better.

Ms. Shivani Sharma, Mr.Satyajit Sen Purkayastha proposes an Enhanced image fusion technique based on wavelet transform and describes different ways of image fusion in[5]. First method is average method in this method the simplest way of image fusion is to take the average of the two images pixel by pixel this method is used when the images contain additive noise. Another method is using PCA principle component analysis in this method the fusion is done as it transforms a number of correlated variables into a small number of uncorrelated linear combinations of variables called principal
components. Now the paper moves to wavelet based fusion and done by using 4 different wavelet Haar wavelet, Daubechies and coifmen wavelet, and symlet. Now the paper proposes a new wavelet based fusion method hybrid wavelet which is done by combing two wavelet here they used haar that is a simplest step function with a modified daubechies called symlet. And the paper measure three parameter entropy quality index and standard deviation for analysis. And the results show that the proposed method is way better than the usuaull.

In paper [6] the author has done a survey in A Multimodality Medical Image Fusion Algorithm Based on Wavelet Transform in this paper proposes an algorithm such that the wavelet low-frequency coefficients of the medical image, they adopted absolute value maximization fusion rule, compared with commonly-used weighted averaging fusion rule, this rule gave an algorithm which reflected the boundary of the images used more accurately and the brightness was improved greatly. For the wavelet high-frequency coefficients of the medical image, they used fusion rule based on regional information entropy contrast degree: when the difference of regional information entropy contrast degree between two source images is large, selected pixels with the larger regional information entropy contrast degree as fused coefficients; else, used the weighted averaging rule to determine the fused coefficients, compared with commonly-used fusion rule of regional characteristics value maximization by this they get a good, visual effect and improved image. The parameters used for the analysis of the fused image is entropy, mean, variance, cross entropy.

Basant Dhakad, Vikash Shrivastava, Vivek Shrivastava in [7] proposes a method to Improving medical images using Wavelet image fusion techniques in this paper two different transform domain fusion techniques are used one of them is the common DWT and the other one is Laplacian pyramid method. The first one is the common method with Debauchees filter and using maximum pixel replacement fusion rule or absolute maximum value which select the maximum values from each section. Also the paper says there are some features associated with wavelet transform are space compression feature and structure similarity of wavelet coefficients among different scales. Compression of frequency means that the energy of original image concentrates at low frequency sub band. Spatial compression indicates that the energy of high frequency sub band mainly distributes at the corresponding positions of the edges of original image. The second method Laplacian pyramid method implements a “pattern selective” approach to image fusion, so that the compound image is constructed not as one pixel at a time. It is easy to implement and computationally efficient. The Laplacian Pyramid transform is specifically designed for capturing image details over multiple scales. Each band-pass level is sampled at precisely its Nyquist frequency making it less sensitive to noise. All these properties make the laplacian pyramid transform a well-suited representation for the fusion task. There is no information on the parameter used in the work.

In paper [8] the author proposes a method for Multimodal image fusion using multiresolution technique now in this paper says that wavelet transform method based fusion will suffer a shift invariance so the paper introduces a dual tree complex wavelet transform method in order from to avoid this drawback we use this method. DT-CWT is the combination of two 1-D transforms. In wavelet transform, it has 1-D real filters. But in dual tree, there are two trees containing complementary filter values, one tree corresponds to real values and the other one is imaginary so the imaginary filter avoid the drawback of normal DWT so even they are highly complex we use them for better efficiency, this provides limited directional
information when compared to the wavelet transform, also this method captures edge information more when compared to wavelet transform. The next method is Contourlet transform this method is used to decompose the image at different scales and orientations. Contourlet transform is an extension of wavelet transform and it uses directional filter the multiscale decomposition is done by the laplacian pyramid. This Contourlet transform not only comprises all the features corresponding to a wavelet transform but also it provides better directional information. Contourlet transform captures smooth contours as well as edges at all orientations. Contourlet transform consists of a double filter bank structure and it is implemented by the pyramidal directional filter bank which decomposes images into directional subbands at multiple scales. The coefficient are selected differently using maximum and average methods in different manner corresponding to both high and low pass filters. This uses four evaluation parameter entropy, standard deviation ,image quality index, coefficient correlation. And finally comes up with the result that Dual Tree Complex Wavelet Transform is better than Contourlet transform.

Comparison of Fusion Algorithms for Fusion of CT and MRI Images is done in[9]. Which compares fusion using wavelet and curvelet and their combination. Now the curvelet transform uses wrapping algorithm for the fusion techniques. Now finally the fusion with the combination of wavelet and curvelet is the better fusion technique also the parameter used for the valuation are RMSE and PSNR.

Arathy Menon NP has done a Survey on Medical Image Fusion in paper [10]. This paper deals with a survey to find out a novel CT/MR image fusion algorithm which allows physicians to visually asses corresponding bony and soft tissue detail on a single image eliminating the mental alignment and correlation needed when both CT and MR images are needed for diagnosis. This paper discuss about different types of fusion methods like wavelet,contourlet,curvelet,non subsampled contour transform, principal component analysis and graph cut method. Wavelet transforms provide faster transforms and convenient tree data structures. Two dimensional wavelet transforms are slightly different from one dimensional ones. One can easily extend it by simply multiply the one dimensional scaling and wavelet functions. Wavelet transforms in two dimensions is used in image processing. PCA has good SNR ratio. It helps to reduce redundant information. Graph-cut method approach for combining sub bands, it is still a transform-based method, and, therefore, is limited by the transformation performed. Wavelet transform method will be much more useful fusion method especially in the case of medical image fusion is the conclusion of the paper.

Deepali Sale , Dr. Madhuri Joshi , Varsha Patil Pallavi Sonare ,Chaya Jadhav had done Image Fusion For Medical Image Retrieval which deals with the wavelet based fusion method using different fusion rules is proposed and it is applied on the CT and MRI images of the human brain[11]. Surveyor has used different sets of the registered multimodal brain images. It is observed that minimum pixel replacement method is giving the better results as compared to other methods as the noise is much reduced in minimum method. Contrast of the images is much improved in the coefficient addition method. Also the changes in the weights on the both modality gets different results. Contrast improves by giving more weight to MRI image. Error observed is less when more weight is given to CT. Any artifacts present in the fusion process may be considered as information. As medical images are low contrast images the information in all the parts (intensity areas) is equally important. The author has also assess the fused images using edge based quality parameters also to observe how much edge information is preserved in the fused image. Edge is more efficiently
preserved in the coefficient addition method of fusion with less information loss. The information retrieval is of much importance in medical application. The information in the soft tissue and bony structure both are important in diagnosis of any cancertal development or any fracture.

In paper [12] MRI and CT Image Fusion is Based on Wavelet Transform. In this paper, the method for the fusion of computed tomography (CT) and magnetic resonance images (MRI) images is based on wavelet transform. Different fusion rules are then performed on the wavelet coefficients of low and high frequency portions. The registered computer tomography (CT) and magnetic resonance imaging (MRI) images of the same people and same spatial parts have been used for the analysis. This paper also deals with different types of pixel level fusion methods like average method, select minimum and select maximum. The author has combined the wavelet transform and various fusion rules to fuse CT and MRI images. This method gives interesting results in terms of smaller RMSE and higher PSNR values. From all the fusion rules checked by the author the maximum fusion rule performs better as it achieved least MSE and highest PSNR values. The images used here are gray scale CT and MRI images.

The paper[13] Image Fusion On MRI And CT Images Using Wavelet Transforms is done also hardware implementation is done using Dsp processor. This paper discuss about the image fusion of MRI and CT by integrating wavelet transform and principal common analysis technique and there by implementing an hardware with the help of DSP processors. The work anticipated in this paper uses haar wavelet. It is fastest to compute and simplest to execute. The main advantages are, it can be calculated in place without a temporary array so with respect to memory point it will be efficient. And it is exactly reversible without the edge effects which is a problem with other wavelet transforms. Different types of wavelet transforms like orthogonal,biorhontogonal,trous and WPCA are dealt in this survey. Haar wavelet transform is applied to decimate each source image. The resulting coefficients are fused and reconstructed using inverse wavelet transforms. From the statistical analysis, it is proved that the haar wavelet is more suitable for medical image fusion, since it provides less MSE and high SNR than Orthogonal, Biorhontogonal, Trous and PCA wavelets. The proposed technique was implemented on the processor based kit to show the hardware support.

K Kusum Rani , Reecha Sharma has done a Study of Image Fusion using Discrete wavelet and Multiwavelet Transform[14]. In this paper it deals about Discrete wavelet and Discrete Multiwavelet are used in image fusion. Discrete wavelet transform (DWT) technique is used for multi Resolution fusion. Multiresolution fusion uses wavelet transform at multi scale for the representation of the source images that is for decomposition. Multiwavelets are combination of scalar wavelet and has many use than scalar wavelets. So Multiwavelet analysis will provide a more more information than wavelet multiresolution analysis. Here DWT and DMWT are compared with each other. Here two different modality images are fused using the maximum fusion rules based on the Multi-Wavelet and wavelet transforms. Qualitatively multiwavelet transform give better performance than wavelet. Multiwavelet gives edge and boundary details with higher accuracy. With proper selection of multiwavelet transform and coefficient may help to improve the quality of the image fusion results. . A multiwavelet system provides perfect reconstruction also preserve length (orthogonality), better clarity at the boundaries. By using multiwavelets we get better performance for image processing applications as compared with the scalar wavelets.
Implementation of Medical Image Fusion Based on DWT was done using FPGA in [15] it is demonstration of the hardware implementation of the project. First fusion was done using wavelet transform then implemented it using an GUI then using FPGA the hardware realization was done then using Visual basic user interface was developed. And for using wavelet transform the three method maximum, minimum and mean rule were used for selecting the coefficient and maximum yield more result.

Kusum Rani, Reecha Sharma has done Image Fusion of CT/MRI using DWT, PCA Methods and hardware was implemented by Analog DSP Processor in which they used five fusion methods Normal Minimum, PCA, DWT, DWT+PCA, Biororthogonal method for wavelet decomposition they used Haar and they found the better result with combination of DWT+PCA in [16]. And the parameter considered was RMSE and PSNR. The Analog Devices initial product family, the ADSP-BF531, ADSP-BF532, and ADSP-BF533 could be used to implement the project.

In paper [17] the author has done Medical image fusion by wavelet transform modulus maxima in this method wavelet transform has been used to achieve the fusion a fusion rule is proposed and used for calculating the wavelet transformation modulus maxima of input images at different bandwidths and levels. And mutual information was used analyze the performance of the fusion.

Image Fusion Techniques for Medical Images using Wavelets is described in here and in the work image fusion was carried over for multimodal images obtained from CT and MRI scans [18]. The wavelet used was second order symlet and different types of fusion rules were used for the same set of images. These are the fusion rule used Maximum value, Minimum value, Mean Value and Random value. The analysis is done with entropy, mean square error, PSNR.

In paper [19] the author has done Modified Approach of Multimodal Medical Image Fusion Using Daubechies Wavelet Transform. In this work, a modified approach of multimodal medical image fusion scheme using Daubechies complex wavelet transform is proposed. In the proposed algorithm each of images are decomposed using DWT, then the coefficient are fused using a newly created fusion rule then the fused coefficients are reconstructed by performing the inverse DWT. The qualitative and quantitative analysis shows that the proposed method produce better fused output. The parameter measured are entropy, Mutual information, Standard Deviation.

Yadvendra Singh and Amit Rajput has proposed Wavelet-Based Multi-Modality Medical Image Fusion of CT/MRI for Medical Diagnosis Purpose in [20]. In this paper aims to demonstrate the application of wavelet transformation to multimodality medical image fusion. The use of wavelet based fusion algorithms on medical image fusion of CT and MRI for the fusion image quality evaluation and for more information content. Peak-to-peak signal-to-noise ratio (PSNR) method for measuring fusion effectand by using three method like weighted average and pyramidal method from finding PSNR this paper shows that wavelet transformation is better.

5 CONCLUSION

The MRI and CT images are two different images which give information of the same thing in two different manners. When they are fused together two give another image which has both of their images information will clinical help for better diagnosis. Now the fusion is done using different wavelet which is one of the finest method of transformation technique in image processing. So each
family of wavelet will give different results and from survey it was found that wavelet transformation was very useful for the survey comparing to different methods like PCA, DFT, DCT. The fused parameter evaluation was done using measuring different parameters like Entropy, PSNR, RMSE, and Mutual Information.

ACKNOWLEDGEMENT

The authors would like to acknowledge the R&D cell of ECE Department of MEA Engineering College for providing their support on the work.

REFERENCE

Springer-Verlag Berlin Heidelberg 2010.
[17]. Guihong Qu, Dali Zhang and Pingfan Yan “Medical image fusion by wavelet transform modulus maxima” 13 August 2001 / Vol. 9, No. 4 / OPTICS EXPRESS 184

