Comparing Naive Bayes Method and Artificial Neural Network for Semen Quality Categorization

Macmillan Simfukwe¹, Douglas Kunda¹ and Christopher Chembe¹

¹Center for ICT Education, Mulungushi University, Kabwe, P.O. Box 80415, Zambia

Abstract

One of the world wide health care concerns in the last two decades has been the decrease in fertility rates. The problem is said to be more severe among the male population. Research has shown that environmental factors and life style habits have an impact on the quality of semen. Orthodox diagnosis of seminal quality employs a laboratory approach, involving expensive tests, which are also sometimes uncomfortable to the patient. Application of machine learning techniques has been on the rise and has demonstrated encouraging results in many fields, including health care.

In this paper we propose Naïve Bayes and Artificial Neural Network classifiers for the characterization of seminal quality, based on environmental factors and life style habits Comparisons between the two classifier models show that their accuracy rate is the same and stands at 97%, on the training set.

Keywords: Artificial Neural Network, Naïve Bayes, Semen Quality, Classification, Male Fertility Potential

1. Introduction

The decline in male potential has been on the world wide health care concerns for the last two decades. Research has demonstrated that the main causes of this problem have been environmental and life style habits, such as smoking and alcohol consumption. Semen analysis is important for the evaluation of male fertility potential and can also be used for the assessment of sperm donors (Barrat et al, 1998).

In order to evaluate a male fertility potential, clinicians use the data obtained from semen analysis (Koletti, 2003) and compare the results with the corresponding reference value determined and set by the World Health Organization (WHO, 1999). Rowe and others (2000) recommend that the interpretation of results should be done by taking into consideration certain factors that may modify the semen parameters, such as fever, toxic exposure, childhood disease, etc.

Machine learning techniques have been applied in several fields, ranging from engineering disciplines to management and biomedical sciences. In the health care domain, expert and decision-support systems have been developed and used to improve efficiency. In our previous work, (Simfukwe et al, 2014), we suggested that the use of expert and decision-support systems may assist in addressing the shortage of medical personnel in developing countries. The benefits of using machine learning techniques in medical applications are further highlighted by Liboa and others (2006) and summarized as follows: (a) Easy optimization, leading to cost-effective and flexible non-linear modeling of large data sets; (b) good predictive accuracy, capable of supporting clinical decision making and (c) easier knowledge dissemination, with the provision of explanations on how decisions are arrived at.

The main objective of this paper is to compare Naïve Bayes and Artificial Neural Network models, as applied to the problem of semen quality categorization.

Naïve Bayesian classifier is a very attractive classifier has proved to be effective in many practical applications, including text classification, medical diagnosis, and systems performance management. Altheneyan et al (2014) applied the Naïve Bayes model for the author prediction of Arabic texts. The Naïve Bayes model has also been used for fault diagnosis in steam turbines (Wentao et al, 2014), Sales forecasting (Katkar et al, 2015 and automatic classification of webpages from a massive data network (LinBin et al, 2014).

Artificial neural networks have been widely applied for both classification and clustering problems. Ramzi and Zahari (2014) applied a back-propagation ANN for online recognition of handwritten Arabic characters, while Rajput and Verma (2014) proposed the utilization of a backpropagation feed forward ANN approach for speech recognition. ANN have also been used for feature reduction (Shah et al, 1999), in symmetric key cryptography (Sagar et al, 2015) and for leaf identification (Ankalaki et et, 2015).
We have used the male fertility data set from the UCI data set repository. The rest of the paper is arranged as follows: in section 2 we discuss our methodology, in section 3 we talk about our experiment's design, in section 4 we analyze and discuss the results. Finally, we draw some conclusions from our study and project some future research directions.

2. Methodology

2.1. Fertility Data set

The data set is obtained from the University of California Irvine (UCI) dataset repository. It consists of semen samples, obtained from 100 volunteers, and analyzed according to WHO 2010 criteria. The data set attributes are based on the fact that sperm concentration is affected by the social demographic and environmental factors, health status and life style habits. The data set can be summarized as follows:

- Number of Attributes: 9 plus the class attribute
- Number of instances: 100
- Missing attribute values: None
- Class distribution: There are 88 normal samples (88%) and 12 altered samples (12%)

Table 1 presents a description of the attributes and the range of their domain values.

Table 1. Attribute description and domain value range

<table>
<thead>
<tr>
<th>Attribute/Feature</th>
<th>Domain Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Season in which the analysis was performed</td>
<td>Winter = -1, Spring = -0.33, Summer = 0.33, Fall = 1</td>
</tr>
<tr>
<td>Age at the time of analysis (18-36 range normalized to [0,1] range)</td>
<td>0.33 = 0, 0.6 = 1, 0.3 = 1.0 and the values in between are calculated as fractions of 36</td>
</tr>
<tr>
<td>Suffered from childhood diseases (e.g. chicken pox, mumps, measles, polio)</td>
<td>Yes = 0, No = 1</td>
</tr>
<tr>
<td>Suffered accident or serious trauma</td>
<td>Yes = 0, No = 1</td>
</tr>
<tr>
<td>Surgical intervention</td>
<td>Yes = 0, No = 1</td>
</tr>
<tr>
<td>Suffered high fever in the last year</td>
<td>Less than 3 months ago = -1, More than 3 months ago = 0, No = 1</td>
</tr>
<tr>
<td>Frequency of alcohol consumption</td>
<td>Several times a day = 0.0, Every day = 0.2, Several times a week = 0.8</td>
</tr>
</tbody>
</table>

Table 2. Summary of attributes and domain values

<table>
<thead>
<tr>
<th>Attribute/Feature</th>
<th>Domain Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking habit</td>
<td>Never = -1, Occasional = 0, Daily = 1</td>
</tr>
<tr>
<td>Number of hours spent sitting per day (a day is assumed to consist of 16 hours)</td>
<td>1 hour = 0, 16 = 1 and the values in between are calculated as fractions of 16</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>(N for Normal, O for Altered)</td>
</tr>
</tbody>
</table>

The data collection and preprocessing (normalization) procedure for this data set is described in Gil et al (2012).

2.2. Naïve Bayes

Naïve Bayes (NB) is a simple technique for constructing classifiers: models that assign class labels to problem instances, represented as vectors of feature values, where the class labels are drawn from some finite set. Naïve Bayes classifiers are based on the assumption that the features are independent of each other, given the class variable. Now let us derive a Naïve Bayes model for our problem (fertility dataset).

Let \(S = \{f_1, f_2, \ldots, f_n\} \) be a set of the features, such as those presented in table 1, where \(n \) denotes the total number of features, respectively. Let each instance \(X_j \in \{X_1, X_2, \ldots, X_p\} = P \), where \(p \) is the total number of instances, be represented by the same feature set \(S \) . Let \(C_i \in \{C_1, C_2, \ldots, C_m\} = C \) be a class to which a particular instance, \(X_j \), belongs depending on the values of its features. The Naïve Bayes Learner is to categorize/classify an instance, \(X_j \), based on the assumption that the elements of set \(S \) (features) assume their values independent on one another. The Naïve Bayes classifier attributes a new instance, expressed in the form of feature set \(S \), to the most probable target class \(C_i \) according to equation 1.

\[
C_i = \text{argmax}_{C \in C} P(C_i | f_1, f_2, \ldots, f_n) \tag{1}
\]

The probability \(P(C_i | f_1, f_2, \ldots, f_n) \) must be calculated for each \(C_i \in C \) using the following Bayes formula:

\[
P(C_i | f_1, f_2, \ldots, f_n) = P(f_1, f_2, \ldots, f_n | C_i) \times P(C_i) / P(f_1, f_2, \ldots, f_n) \tag{2}
\]

where \(P(f_1, f_2, \ldots, f_n) \neq 0 \).
Assuming the uniformity of \(\{f_1, f_2, \ldots, f_n\} \), equation 2 can be simplified into equation 3.

\[
P(C_i | f_1, f_2, \ldots, f_n) = P(f_1, f_2, \ldots, f_n | C_i) \times P(C_i)
\]

(3)

Applying the chain rule, we get:

\[
P(f_1, f_2, \ldots, f_n | C_i) = P(C_i) \times \prod_{k=1}^{n} P(f_k | C_i)
\]

(4)

Therefore the quality of semen sample is categorized to a particular class \(C_i \), according to equation 5.

\[
C_i = \arg \max_{C_i \in C_P} P(C_i) \prod_{k=1}^{n} P(f_k | C_i)
\]

(5)

Where the probability \(P(C_i) \) is estimated by the frequency of instances belonging to class \(C_i \) in the training data set.

\[
P(C_i) = \frac{\text{number of instances belonging to class } C_i}{\text{total number of instances in the training dataset}}
\]

(6)

\(P(f_k | C_i) \) can be estimated using a Gaussian distribution (Altheneyan et al, 2014), using equation 7:

\[
P(f_k | C_i) = g(f_k, \mu_k, \sigma_k)
\]

(7)

2.3. Artificial Neural Network

An artificial neural network (ANN) consists of a pool of simple processing units, called neurons, which communicate by sending signals to each other over a large number of weighted connections (Krose and Van der Smagt, 1996). The neurons are grouped together to from layers, thus an ANN consists of: (1) the input layer which receives inputs from the external environment, the hidden layer(s) (optional), and the output layer which generates the results (e.g. classification results). Figure 1 presents a feed forward ANN, with one hidden layer. Except for the input layer neurons, every neuron is a computational element with an activation function. The principle mechanism of the ANN is that when data is presented to the input layer, the network neurons run computations in the subsequent layers until an output value is yielded at each of the neurons in the output layer.

\[
\mathbf{a}_{j} = \sum_{i=1}^{p} w_{ji} x_{i} + \theta_{j}, \quad y_{j} = f_{j}(a_{j})
\]

(8)

where \(a_{j} \) is the activation of neuron \(j \), which is equal to the sum of the weighted sum of the inputs \(x_1, x_2, \ldots, x_p \) and the threshold \(\theta_{j} \), \(w_{ji} \) is the connection weight from neuron \(i \) to neuron \(j \), \(f_j \) is the activation function for the \(f_{ja} \) neuron and \(y_j \) is the output. Figure 2 shows a graphical representation of how a neuron processes information.

The sigmoid function is popularly used as the activation function and is defined as:
A single neuron in a multi-layer ANN is able to linearly separate the input space into subspaces by means of a hyper plane defined by the weights and the threshold, where the weights define the direction of the hyper plane and the threshold offsets it from the origin (Gil et al, 2012).

In order to train a multi-layer feed forward ANN, we employ supervised learning based on the backpropagation algorithm (Rumelhart, Hinton and Williams, 1986). The backpropagation algorithm is a gradient descent method for the adaptation of connection weights. Here is how the backpropagation algorithm works:

All the weight vectors w_i are initialized with small random values from a pseudorandom sequence generator. Then and until the convergence (i.e. when the error E is below a preset value) we repeat the three basic steps:

1. The weight vectors w_i are updated by
 $$w(t+1) = w(t) + \Delta w(t)$$

2. Where
 $$\Delta w(t) = -\alpha \frac{\partial E(t)}{\partial w}$$

3. Compute the error $E(t+1)$, where t is the iteration number, w is the weight vector and α is the learning rate. The backpropagation algorithm adapts the weights and the thresholds of the neurons in a way that minimizes the error function:
 $$E = \frac{1}{2} \sum_{p=1}^{n} (d_p - y_p)^2$$

where y_p is the actual output and d_p is the desired output for input pattern/instance p.

The minimization of E can be accomplished by gradient descent, i.e. the weights are adjusted to change the value of E in the direction of its negative gradient. The exact updating rules can be computed by applying the derivatives and the chain rule.

3. Experiment Design

The experiments were conducted in the Mat Lab R2014a platform on computer equipped with 1.00 GHZ processor and 4GB RAM.

The dataset was first imported into Mat Lab with the help of the Mat Lab import wizard, and saved in the form of two matrices; a 100 by 9 matrix for the attribute values and a 100 by 1 for the class labels (for the NB model) or a 100 by 2 (for the ANN model).

3.1. Building and training of the Naïve Bayes Classifier

The Naïve Bayes model was created and trained using the "fitNaiveBayes" command contained in Mat Lab, and figure 3 presents the results of invoking this command.

![Naive Bayes classifier with 2 classes for 9 dimensions. Feature Distribution: normal
Classes: 0, 1](image)

Figure 3. Creating the Naïve Bayes classifier

Value indicates the class label. In this case, 0 is for normal and 1 is for altered. Count shows the distribution or number of samples in each class, while percent shows the number of samples in each class as a percentage of the total number of samples in the data set.

3.2. Building and training of the Neural Network Classifier

The ANN model was created using a set of Mat Lab built-in commands. Figure 4 presents a graphical summary of the creation and training process for the ANN model.
Figure 4. Creating and building the ANN classifier

An ANN with 9 neurons in the input layer (since we have nine attributes), 17 neurons in the hidden layer (determined experimentally) and 2 neurons in the output layer (since we have 2 possible outputs), was created. For training we used the Levenberg-Marquardt training approach and the Mean Squared Error for performance assessment. The data set is partitioned as follows: 70% of the samples are used for training, 15% for validation and 15% for testing.

3.3. Testing the Classifiers and Results Analysis

Validation of the classifiers is done using the training data samples, and the validation results are presented in the form of confusion matrices, shown in tables 2 and 3.

Table 2. Confusion matrix for ANN on training data samples

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>86 (TP)</td>
<td>1 (FN)</td>
</tr>
<tr>
<td>Negative</td>
<td>2 (FP)</td>
<td>11 (TN)</td>
</tr>
</tbody>
</table>

Table 3. Confusion matrix for NB on training data samples

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>86 (TP)</td>
<td>2 (FN)</td>
</tr>
<tr>
<td>Negative</td>
<td>1 (FP)</td>
<td>11 (TN)</td>
</tr>
</tbody>
</table>

We can compute the accuracy rates for the two classifiers using equation 13.

\[
\text{Accuracy rate} = \frac{TP+TN}{TP+TN+FN+FP} \times 100 \quad (13)
\]

Where TP, TN, FN and FP stand for true positive, true negative, false negative and false positive, respectively.

The accuracy rates for both classifiers on the training dataset are equal and stand at 97%. However, this does not guarantee good performance on unseen data samples.

The two classifiers were further tested on randomly generated unseen data samples, presented in table 4. F1 through to F9 are the attributes columns, presented in table 1, and in the class column, N stands for "normal" and O stands for "altered".

Table 4. Randomly generated unseen data samples

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.6</td>
<td>0.9</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
<td>0.9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>O</td>
</tr>
</tbody>
</table>

The results were as follows: the accuracy rate for the NB classifier was 80%, while that of the ANN classifier was also 80%. Tables 5 and 6 present the test results on unseen data samples.

Table 5. Confusion matrix for ANN on unseen data samples

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>2 (TP)</td>
<td>1 (FN)</td>
</tr>
<tr>
<td>Negative</td>
<td>0 (FP)</td>
<td>2 (TN)</td>
</tr>
</tbody>
</table>

Table 6. Confusion matrix for NB on unseen data samples

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>1 (TP)</td>
<td>1 (FN)</td>
</tr>
<tr>
<td>Negative</td>
<td>0 (FP)</td>
<td>3 (TN)</td>
</tr>
</tbody>
</table>
4. Conclusions

We have experimented with two popular machine learning techniques to classify the quality of human semen, in order to assess the male fertility potential. Our dataset is highly imbalanced and biased towards the "Normal" class (88%) and this has an impact on the accuracy rate (80%) of the classifiers, on unseen data samples. We can develop a decision support system for the assessment of male fertility potential, based on the techniques. Such a system can be used for preliminary assessment of semen quality before more elaborate, expensive and uncomfortable tests are conducted on the patient.

In future we would strive to improve the classification accuracy on unseen data samples by employing classifier fusion. This is to ensure that different classifiers complement each other, since they use different assumptions as regards the data; they are likely to make different mistakes. This fact is evident from the results presented in tables 5 and 6; i.e. even though both classifiers have the same accuracy, their true positive (TN) and true negative (TN) results are different, for the same unseen data samples. We would also like to experiment with other machine learning techniques on this data set and compare the results.

References

[9] Huang Wentao; Yu Jun; Zhao Xuezeng; Lu Xiaojun. Fault diagnosis for steam turbine based on flow graphs and naïve Bayesian classifier. Mechatronics and Automation (ICMA), IEEE International Conference 2014

[10] Xu LinBin; Liu Jun; Zhou WenLi; Yan Qing. Adaptive Naïve Bayesian Classifier for Automatic Classification of Webpage from Massive Network Data. Intelligent Human-Machine Systems and Cybernetics (IHMSC), Sixth International Conference on 2014

[12] Xu LinBin; Liu Jun; Zhou WenLi; Yan Qing. Adaptive Naïve Bayesian Classifier for Automatic Classification of Webpage from Massive Network Data. Intelligent Human-Machine Systems and Cybernetics (IHMSC), Sixth International Conference on 2014

Macllan Simfukwe is currently pursuing a PHD in Computer Science at Southwest Jiaotong University in China. He holds a Bachelor of Applied Informatics Degree and a Master of Applied Informatics Degree, both obtained from the St. Petersburg State University of Engineering and Economics in Russia. He is also a Lecturer at Mulungushi University in the Center for ICT Education in Zambia. He is doing is PHD research under the Key Lab of Cloud Computing and Intelligent Technology of Sichuan Province, China. He is also a member of the computer society of Zambia. His research areas of interest include machine learning, data mining, computer vision, health informatics and enterprise information systems.

Dr Douglas Kunda holds a Doctorate Degree from the University of York, UK. He is currently the Director of the Center for ICT Education at Mulungushi University in Zambia. He is a fellow of the Computer Society of Zambia and a member of the Association of Computing Machinery. He worked as project manager for the Integrated Financial management Information System (IFMIS) project for the Ministry of Finance of Zambia and he is a certified SAP ERP Solution Manager Consultant.

Christopher Chembe is currently pursuing a PHD in Computer Science at the University of Malaya in Malaysia. He holds a BSc in Computer Science from University of Zambia and a Master's Degree in Computer from University of Malaysia. He is also a lecturer at Mulungushi University, Zambia, in the Center for ICT Education. He is a member of the Computer Society of Zambia. His areas of research wireless networks, ad hoc networks and internet of vehicles.