Two Algorithms for Coloring Permutation Graphs

H.El-Zohny(1), M.M. Khalil(2), S.AbdElrahman(3)

1,2,3Mathematics Department, Faculty of science AlAzhar University Cairo- Egypt

Abstract: -
In the first part of this paper we introduce new two algorithms for coloring permutation graphs. by this algorithm we can divide the permutation graph into a number of independent sets. We can apply this algorithm on two permutation graphs. In the second part we introduce chromatic number and some operations for two permutation graphs.

Keywords: - algorithm, permutation graph, Cartesian product, chromatic number, perfect graph.

Algorithm:
In mathematics, computer science, and related subjects, an algorithm is a finite sequence of steps expressed for solving a problem. Algorithm can be expressed as

Intersection graph:-
A graph G = (V, E) is called intersection graph for a finite family F of a none empty set if there is a one to one correspondence between F and V such that two sets in F have non empty intersection if and only if their correspondence vertices in V are adjacent. Any undirected graph G may be represented as an intersection graph:-for each vertex v, of G form a set s, consisting of the edges incident to v, then two such sets have a non-empty intersection if and only if the corresponding vertices share an edge.

Permutation graph:-
An undirected graph G = (V, E) with vertices V = {1, 2, . . ., n} is called a permutation graph if there exists a permutation π on {1, 2, . . . , n} such that for all i, j ∈ V , (i-j)(π^(-1)(i)- π^(-1)(j))<0 , If and only if i and j are joined by an edge, where π^(-1) is the position in the sequence where the number i can be found. Geometrically, the integers 1,2,…n are drawn in order on areal line called as upper line and π(1), π(2),…, π(n) on a line parallel to this line called as lower line such that for each i ∈ N, I is directly below π(i).next ,for each I ,a line segment is drawn from I on the lower line to I on the upper line and it is denoted by l(i).then there is an edge (i,j)in G if and only if the line segment l(i)for I intersect the line segment l(j)for j.

Permutation graph is a class of intersection graph for the intersection of line segments.

Permutation diagram and it's permutation graph in figure (1),where the permutation is 72481935106
Graph coloring:-
Defined as coloring the nodes of the graph with
the minimum number of colors without any
two adjacent nodes having the same color.
Where the minimum number of colors for a
graph is denoted by \(\chi(G) \). In other words
coloring of a graph is a mapping \(c:V \rightarrow S \), where
"S" is a finite set of colors, such that if \(vw \in E \)
then \(c(v) \neq c(w) \).

clique:-a clique of G is a set of vertices where
every pair of vertices are adjacent.

Clique number:- defined as the size of the
largest clique of that graph and is denoted by
\(\omega(G) \)

Perfect graph:-
A graph G is perfect if for induced sub graph H
of G, \(\omega(H) = \chi(H) \).

The degree of a vertex: the number of its
adjacent vertices (the number of the neighbors
of the vertex)

Main results

Algorithm (1) for coloring permutation
graphs:
In this algorithm we use the largest degree
ordering (LDO) algorithm and combining it
with the incident degree ordering (IDO).

Largest degree ordering:
It chooses a vertex with the highest number of
neighbors. Intuitively, LDO can
be implemented to run in \(O(n^2) \)

Incidence degree ordering:
The incidence degree ordering of a vertex is
defined as the number of its adjacent colored
vertices.

The algorithm works by choosing the largest
degree ordering among the vertices and when
we found that there are two nodes having the
same degree, the IDO was used to choose
between them.

The algorithm :-

Input: graph (set of nodes) \(n_1 , n_2 , \ldots , n_m \), m
colors, m colors.

Output: colored nodes and total number of
colors.

\(d \); represent the degree of a node in the graph.

\(ID \); represent the incident degree of anode in
the graph.

\(C_j \); the color classes [which is also the
minimum number of colors needed to color the
graph].

Begin
No of colored nodes=0; \(C_j=0; \ C_j=C_j+1 \)
do
{Max=-1
For I=1 to m
{- If (!colored ((n_i)))
{If(d>max)
{max=d
Index=i
}
Else if(d=max)
if(ID(n_i)>ID(n_index))
Index=i

53
Else (d<max)
break

}

Color (n_{index})
Put n_{index} in C_j
If n_{index} is adjacent to the vertices in the class C_j
 go to the class C_{j+1}
No of colors nodes=no of colored nodes+1
}
While (no of colored nodes <m)
}
End.

Now we indicate how this algorithm runs:

Step (1)

Max=-1
For i=1, 1 not colored
4=d(1)>max=-1
{max=4,index=1}
For i=2, 2 not colored
2=d(2)<max
{do nothing}
For i=3, 3 not colored
4=d(3)=max=4
So test else if condition
ID(3)$)$>ID(1)
{do nothing}
For i=4, 4 not colored
3=d(4)<max=4
{do nothing}
For i=5, 5 not colored
3=d(5)<max=4

For i=6, 6 not colored
4=d(6)=max=4
So test condition of else if
ID(6)$)$>ID(1)
{do nothing}
For i=7, 7 not colored
5=d(7)>max=4
So change {max=5, index=7}
For i=8, 8 not colored
3=d(8)<max=5
So {do nothing}
For i=9, 9 not colored
3=d(9)<max=5
So {do nothing}
For i=10, 10 not colored
1=d(10)<max=5
So {do nothing}
At the final of the first step the algorithm color
n_{index}=7, put node 7 in the class C_1 which mean
the vertex 7 colored with the first possible one color.

Step (2)

Max=-1
For i=1, 1 not colored
4=d(1)>max=-1
{max=4,index=1}
For i=2, 2 not colored
2=d(2)<max
{do nothing}
For i=3, 3 not colored
4=d(3)=max=4
So test else if condition
ID(3)$)$>ID(1)
{do nothing}
For i=4, 4 not colored
3=d(4)<max=4
{do nothing}
For i=5, 5 not colored
3=d(5)<max=4

For i=6, 6 not colored
4=d(6)=max=4
So test else if condition
ID(3)!>ID(1)
{do nothing}
For i=4, 4 not colored
3=d(4)<max=4
{do nothing}
For i=5, 5 not colored
3=d(5)<max=4
{do nothing}
For i=6, 6 not colored
4=d(6)=max=4
So test condition of else if
ID(6)=ID(1)
{do nothing}
So {do nothing}
For i=7; 7 colored
4=d(6)=max=4
For i=8; 8 not colored
4=d(8)=max=4
So test condition of else if
ID(6)=ID(3)
{do nothing}
So {do nothing}
For i=9; 9 not colored
3=d(9)<max=5
So {do nothing}
For i=10; 10 not colored
1=d(10)<max=5
So {do nothing}

At the final of the second step the algorithm colored nindex=1, since (1,7)∈E, the vertex 1 colored with different color, so put the vertex 1 in the color class C₂.

Step (3)

Max=-1
At the final of the step (3) the algorithm color the vertex 3, put the vertex 3 in the second class \(C_2 \) since the edge \((3,7) \in E, C_2 = \{1,3\} \).

Step(4)

For i=1; 1 colored

For i=2; 2 not colored

\[2=d(2) > max = -1 \]

So \{max=2, index=2\}

For i=3; 3 colored

For i=4; 4 not colored

\[3=d(4) > max = 2 \]

So \{max=3, index=4\}

For i=5; 5 not colored

\[3=d(5) = max = 3 \]

So test condition of else if

ID(5),ID(4)

So \{do nothing\}

For i=6; 6 not colored

\[4=d(6) > max = 3 \]

So \{max=4, index=6\}

For i=7; 7 colored

For i=8; 8 not colored

\[4=d(8) = max = 4 \]

So test condition of else if

ID(8),ID(6)

So \{max=4, index=8\}

For i=9; 9 not colored

\[3=d(9) < max = 4 \]

So \{do nothing\}

So \{do nothing\}

For i=10; 10 not colored

\[1=d(10) < max = 4 \]

So \{do nothing\}

At the final of step (4) the algorithm color the vertex 8, put the vertex 8 in the color class \(C_1 \), \(C_1 = \{7,8\} \).

Step(5)

Max=-1

For i=1; 1 colored

For i=2; 2 not colored

\[2=d(2) > max = -1 \]

So \{max=2, index=2\}

For i=3; 3 colored

For i=4; 4 not colored

\[2=d(2) > max = -1 \]

So \{max=2, index=2\}

For i=5; 5 not colored

\[3=d(4) > max = 2 \]

So \{max=3, index=4\}

For i=6; 6 not colored

\[3=d(4) > max = 2 \]

So test condition of else if

ID(5),ID(4)

So \{do nothing\}

For i=7; 7 colored

For i=8; 8 not colored

\[4=d(6) > max = 3 \]

So \{max=4, index=6\}

For i=9; 9 not colored

\[3=d(9) < max = 4 \]

So \{do nothing\}

So \{do nothing\}

For i=10; 10 not colored

\[1=d(10) < max = 4 \]
So \{do\ nothing\}

At the final of step (5) the algorithm color the vertex 6, put the vertex 6 in the color class \(C_2\), \(C_2=\{1,3,6\}\).

Step (6)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>1 colored</td>
</tr>
<tr>
<td>i=2</td>
<td>2 not colored</td>
</tr>
<tr>
<td>2=d(2)>max=-1</td>
<td>2=d(2)>max=-1<input/output/4></td>
</tr>
<tr>
<td>So {max=2, index=2}</td>
<td>So {max=2, index=2}</td>
</tr>
<tr>
<td>i=3</td>
<td>3 colored</td>
</tr>
<tr>
<td>i=4</td>
<td>4 not colored</td>
</tr>
<tr>
<td>3=d(4)>max=2</td>
<td>3=d(4)>max=2<input/output/4></td>
</tr>
<tr>
<td>So{max=3, index=4}</td>
<td>So {max=3, index=4}</td>
</tr>
<tr>
<td>i=5</td>
<td>5 not colored</td>
</tr>
<tr>
<td>3=d(5)=max=3</td>
<td>3=d(5)=max=3<input/output/4></td>
</tr>
<tr>
<td>So test condition of else if (ID(5)) (!>) (ID(4))</td>
<td>So test condition of else if (ID(5)) (!>) (ID(4))</td>
</tr>
<tr>
<td>So {do nothing}</td>
<td>So {do nothing}</td>
</tr>
<tr>
<td>i=6</td>
<td>6 colored</td>
</tr>
<tr>
<td>i=7</td>
<td>7 colored</td>
</tr>
<tr>
<td>i=8</td>
<td>8 colored</td>
</tr>
<tr>
<td>i=9</td>
<td>9 not colored</td>
</tr>
<tr>
<td>3=d(9)=max=3</td>
<td>3=d(9)=max=3<input/output/4></td>
</tr>
<tr>
<td>So test condition of else if (ID(9)) (!>) (ID(4))</td>
<td>So test condition of else if (ID(9)) (!>) (ID(4))</td>
</tr>
<tr>
<td>So {do nothing}</td>
<td>So {do nothing}</td>
</tr>
<tr>
<td>i=10</td>
<td></td>
</tr>
<tr>
<td>1=d(10)<max=3</td>
<td>1=d(10)<max=3<input/output/4></td>
</tr>
<tr>
<td>So {do nothing}</td>
<td>So {do nothing}</td>
</tr>
</tbody>
</table>

At the final of step (6) we color the vertex (4), since the neighbors of 4 are in \(C_1,C_2\), the vertex 4 must be put in \(C_3\).

Step (7)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>1 colored</td>
</tr>
<tr>
<td>i=2</td>
<td>2 not colored</td>
</tr>
<tr>
<td>2=d(2)>max=-1</td>
<td>2=d(2)>max=-1<input/output/4></td>
</tr>
<tr>
<td>So {max=2, index=2}</td>
<td>So {max=2, index=2}</td>
</tr>
<tr>
<td>i=3</td>
<td>3 colored</td>
</tr>
<tr>
<td>i=4</td>
<td>4 colored</td>
</tr>
<tr>
<td>i=5</td>
<td>5 not colored</td>
</tr>
<tr>
<td>3=d(5)>max=2</td>
<td>3=d(5)>max=2<input/output/4></td>
</tr>
<tr>
<td>So {max=3, index=5}</td>
<td>So {max=3, index=5}</td>
</tr>
<tr>
<td>i=6</td>
<td>6 colored</td>
</tr>
<tr>
<td>i=7</td>
<td>7 colored</td>
</tr>
<tr>
<td>i=8</td>
<td>8 colored</td>
</tr>
<tr>
<td>i=9</td>
<td>9 not colored</td>
</tr>
<tr>
<td>3=d(9)=max=3</td>
<td>3=d(9)=max=3<input/output/4></td>
</tr>
<tr>
<td>So test condition of else if (ID(9)) (!>) (ID(5))</td>
<td>So test condition of else if (ID(9)) (!>) (ID(5))</td>
</tr>
<tr>
<td>So {do nothing}</td>
<td>So {do nothing}</td>
</tr>
<tr>
<td>i=10</td>
<td></td>
</tr>
<tr>
<td>1=d(10)<max=3</td>
<td>1=d(10)<max=3<input/output/4></td>
</tr>
<tr>
<td>So {do nothing}</td>
<td>So {do nothing}</td>
</tr>
</tbody>
</table>

At the final of step (7) we color the vertex (5), the vertex (5) can't be put in \(C_1\), put it in \(C_2\).

Step (8)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>1 colored</td>
</tr>
<tr>
<td>i=2</td>
<td>2 not colored</td>
</tr>
<tr>
<td>2=d(2)>max=-1</td>
<td>2=d(2)>max=-1<input/output/4></td>
</tr>
<tr>
<td>So {max=2, index=2}</td>
<td>So {max=2, index=2}</td>
</tr>
<tr>
<td>i=3</td>
<td>3 colored</td>
</tr>
<tr>
<td>i=4</td>
<td>4 colored</td>
</tr>
<tr>
<td>i=5</td>
<td>5 colored</td>
</tr>
</tbody>
</table>
For $i=6$; 6 colored
For $i=7$; 7 colored
For $i=8$; 8 colored
For $i=9$; 9 not colored
For $i=10$; 10 not colored

$3=d(9) > \text{max}=2$

So \{\text{max}=3, \text{index}=9\}

For $i=10$; 10 not colored

$1=d(10) < \text{max}=-1$

So color the vertex (10), put it in C_1

At the final of step (8) we color the vertex (9), put the vertex (9) in the class C_1, $C_1=\{7,8,9\}$.

Step (9)

For $i=1$; 1 colored
For $i=2$; 2 colored
For $i=3$; 3 colored
For $i=4$; 4 colored
For $i=5$; 5 colored
For $i=6$; 6 colored
For $i=7$; 7 colored
For $i=8$; 8 colored
For $i=9$; 9 colored
For $i=10$; 10 not colored

Now $\text{max}=-1$

At the final of step (9) we color the vertex (2), the vertex (2) can’t be put in C_1 or C_2, so put it in C_3, $C_3=\{4,2\}$.

Step (10)

For $i=1$; 1 colored
For $i=2$; 2 colored
For $i=3$; 3 colored
For $i=4$; 4 colored
For $i=5$; 5 colored
For $i=6$; 6 colored
For $i=7$; 7 colored
For $i=8$; 8 colored
For $i=9$; 9 colored

So \{do nothing\}

Finally

$C_1=\{7,8,9,10\}$

We have $\chi(G)=3$ which is equal to longest clique of the graph $w(G)=3=\chi(G)$, this indicate that permutation graph is perfect graph.

Also by this algorithm we divide the graph into independent sets, $C_1=\{7,8,9,10\}$, $C_2=\{1,3,6,5\}$, $C_3=\{2,4\}$ where C_1, C_2, C_3 are color classes, where C_1, C_2 are called maximum independent sets in the permutation graph.

Algorithm (2) for coloring permutation graphs:

In this algorithm we combine the saturation degree ordering (SDO), and the largest degree ordering (LDO).

Saturation degree ordering (SDO)

The saturation degree of a vertex is defined as the number of its adjacent differently colored vertices.

This algorithm works as the SDO, but when there are two nodes having the same degree, we use the LDO to choose between them. So there are two criteria to choose the next node to be colored:
*the number of colors surrounding the vertex, SDO.
*the number of vertices surrounding the vertex, LDO.

Algorithm (2)

Input: set of nodes (graph)
\((n_1, n_2, \ldots, n_m) \), m colors.

Output: colored nodes and total number of colored nodes.

Begin
No. of colored nodes =0; \(C_j=0; \)
\(C_j=C_j+1 \)
do
{
Max=-1
For I=1 to m
{if(!colored(n_i))
{
D=SD(n_i)
If(d>max)
{Max=d
Index=i

Else if (d=max)
If(degree(n_i)>degree(n_index))
Index=i
Else (d<max)
break

Color (n_{index})
Put n_{index} in C_j, if there is an edge between n_{index} and the colored vertices in C_j, put it into C_{j+1}.
No of colored nodes=no of colored nodes+1
While (no of colored nodes<m)
}
We now indicate how algorithm(2) runs
At first max=-1, \(C_j=0 \)

Step (1)
For i=1; 1 not colored
0=d(1)>max=-1
So {max=0,index=1}
For i=2; 2 not colored
0=d(2)=max=0

So test the condition of else if
Degree(2)>degree(1)
So {do nothing}
For i=3; 3 not colored
0=d(3)=max=0
So test the condition of else if
Degree(3)>degree(1)
So {do nothing}
For i=4; 4 not colored
0=d(4)=max=0
So test the condition of else if
Degree(4)>degree(1)
So {do nothing}
For i=5; 5 not colored
0=d(5)=max=0
So test the condition of else if
Degree(5)>degree(1)
So {do nothing}
For i=6; 6 not colored
0=d(6)=max=0
So test the condition of else if
Degree(6)>degree(1)
So {do nothing}
For i=7; 7 not colored
0=d(7)=max=0
So test the condition of else if
Degree(7)>degree(1)
So {index=7}
For i=8; 8 not colored
0=d(8)=max=0
So test the condition of else if
Degree(8)>degree(7)
So {do nothing}
For i=9; 9 not colored
0=d(9)=max=0
So test the condition of else if
Degree(9)>degree(7)
So {do nothing}
For i=10; 10 not colored
0=d(10)=max=0
So test the condition of else if
Degree(10)>degree(7)
So {do nothing}
At the finish of step (1),the algorithm color the vertex (7) and put it in color class \(C_1,C_1=\{7\} \).

Step(2)
max=-1
For i=1; 1 not colored
1=d(1)>max=-1
So {max=1,index=1}
For i=2; 2 not colored
1=d(2)=max=1
So test the condition of else if
Degree (2)!>degree(1)
So {do nothing}
For i=3; 3 not colored
1=d(3)=max=1
So test the condition of else if
Degree (3)!>degree(1)
So {do nothing}
For i=4; 4 not colored
1=d(4)=max=1
So test the condition of else if
Degree (4)!>degree(1)
So {do nothing}
For i=5; 5 not colored
1=d(5)=max=1
So test the condition of else if
Degree (5)!>degree(1)
So {do nothing}
For i=6; 6 not colored
1=d(6)=max=1
So test the condition of else if
Degree (6)!>degree (1)
So {do nothing}
For i=7; 7 colored
For i=8; 8 not colored
0=d(8)<max=1
So {do nothing}
For i=9; 9 not colored
0=d(9)<max=1
So {do nothing}
For i=10; 10 not colored
0=d(10)<max=1
So {do nothing}
At the end of the first step we color the vertex (1), put it in C1 since (1,7) ∈ E,
C1={1}.

Step (3)
Max=-1
For i=1; 1 colored
For i=2; 2 not colored
2=d(2)>max=-1
{max=2,index=2}
For i=3; 3 not colored
1=d(3)>max=2
So {do nothing}
For i=4; 4 not colored
2=d(4)=max=2
Degree (4)>degree(2)
{max=2, index=4}
For i=5; 5 not colored
1=d(5)>max=2
So {do nothing}
For i=6; 6 not colored
1=d(6)>max=2
So {do nothing}
For i=7; 7 colored
For i=8; 8 not colored
1=d(8)>max=2
So {do nothing}
For i=9; 9 not colored
0=d(9)>max=2
So {do nothing}
For i=10; 10 not colored
0=d(10)>max=2
So {do nothing}
At the end of the step(3) we color the vertex(4), the vertex (4) can’t be put in
C1 or C2 so C3={4}.

Step (4)
Max=-1
For i=1; 1 colored
For i=2; 2 not colored
2=d(2)>max=-1
{max=2,index=2}
For i=3; 3 not colored
1=d(3)>max=2
So {do nothing}
For i=4; 4 colored
For i=5; 5 not colored
1=d(5)>d(3)=2
So {do nothing}
For i=6; 6 not colored
1=d(6)>d(3)=2
So {do nothing}
For i=7; 7 colored
For i=8; 8 not colored
1=d(8)>d(3)=2
So {do nothing}
For i=9; 9 not colored
0=d(9)>d(3)=2
So {do nothing}
At the end of step (4) color the vertex 3, put it in C2. C2={1,3}.

Step (5)
Max=-1
For i=1; 1 colored
For i=2; 2 not colored
2=d(2)>max=-1
{max=2, index=2}
For i=3; 3 colored
For i=4; 4 colored
For i=5; 5 not colored
1=d(5)>max=-1
{max=1, index=5}
For i=6; 6 colored
For i=7; 7 colored
For i=8; 8 not colored
1=d(8)>d(6)=1
So {do nothing}
For i=9; 9 not colored
1=d(9)>d(6)=1
So {do nothing}
For i=10; 10 not colored
1=d(10)>d(6)=1
So {do nothing}
At the end of step (5) we color the vertex 2, put it in C3. C3={4,2}.

Step (6)
Max=-1
For i=1; 1 colored
For i=2; 2 colored
For i=3; 3 colored
For i=4; 4 colored
For i=5; 5 not colored
1=d(5)>max=-1
{max=1, index=5}
For i=6; 6 colored
For i=7; 7 colored
For i=8; 8 not colored
1=d(8)>d(5)=1
So {do nothing}
For i=9; 9 not colored
1=d(9)>d(5)=1
So {do nothing}
For i=10; 10 not colored
1=d(10)>d(5)=1
So {do nothing}
At the end of step (6) we color the vertex 5, put it in C2. C2={1,3,6,5}.

Step (7)
Max=-1
For i=1; 1 colored
For i=2; 2 colored
For i=3; 3 colored
For i=4; 4 colored
For i=5; 5 not colored
1=d(5)>max=-1
{max=1, index=5}
For i=6; 6 colored
For i=7; 7 colored
For i=8; 8 not colored
1=d(8)>d(5)=1
So {do nothing}
For i=9; 9 not colored
1=d(9)>d(5)=1
So {do nothing}
For i=10; 10 not colored
1=d(10)>d(5)=1
So {do nothing}
At the end of step (6) we color the vertex 6, put it in C2. C2={1,3,6}.

Step (8)
Max=-1
For i=1; 1 colored
For i=2; 2 colored
For i=3; 3 colored
For i=4; 4 colored
For i=5; 5 colored
For i=6; 6 colored
For i=7; 7 colored
For i=8; 8 not colored
l=d(8)>max=-1
So \{max=1,index=8\}
For i=9; 9 not colored
l=d(9)=max=1
So test the condition for else if
Degree(9)>Degree(8)
So \{do nothing\}
For i=10; 10 not colored
l=d(10)=max=1
So test the condition for else if
Degree(10)>Degree(8)
So \{do nothing\}
At the end of step (7) we color the vertex 8, put it in C1,C1={7,8}.

\textbf{Step (9)}
Max=-1
For i=1; 1 colored
For i=2; 2 colored
For i=3; 3 colored
For i=4; 4 colored
For i=5; 5 colored
For i=6; 6 colored
For i=7; 7 colored
For i=8; 8 colored
For i=9; 9 not colored
l=d(9)>max=-1
So \{max=1,index=9\}
For i=10; 10 not colored
l=d(10)=max=1
Test the condition of else if
Degree(10)>Degree(9)
So \{index=9\}
At the end of step (8) we color the vertex 9, put it in C1,C1={7,8,9}.

\textbf{Step (10)}
Max=-1
For i=1; 1 colored
For i=2; 2 colored
For i=3; 3 colored
For i=4; 4 colored
For i=5; 5 colored
For i=6; 6 colored
For i=7; 7 colored
For i=8; 8 colored
For i=9; 9 colored
For i=10; 10 not colored
l=d(10)>max=-1
\{max=1,index=10\}
Color n_{index}(10)
At the end of step (10) we color the vertex 10, put it in C1,C1={7,8,9,10}.
Finally the color classes are
C1={7,8,9,10},
C2={1,3,6,5},C3={4,2}
Algorithm (2) run in $O(n^3)$.

\textbf{Some operations on the chromatic number in permutation graphs}

Compound of two permutation graphs:-
consider two graphs $G_1=(V_1,E_1)$, $G_2=(V_2,E_2)$, $V_1 \cap V_2=\emptyset$, $E_1 \cap E_2=\emptyset$, the join of G_1,G_2 is $G_1+G_2=G=(V,E)$ where $V=V_1 \cup V_2$, $E=E_1 \cup E_2 \cup E_3$ where $E_3=\{v_i v_j : v_i \in V_1, v_j \in V_2\}$ we represent E_3 by symmetric binary relation $\pi \subseteq V_1 \times V_2$ and the compound graph G by $G_1 \pi G_2$.

1) If $\pi=\emptyset$ then we get the union of G_1 and G_2 denoted by $G_1 \cup G_2$. Consider the two permutations (231), (654) the following two permutation graphs as shown in the figure (3).
Apply algorithm (1) on $G_1 \cup G_2$, we find that $\chi(G_1 \cup G_2) = \max \{G_1, G_2\}$.

2) If $\pi = V_1 \times V_2$ [that is all edges between V_1, V_2], we get the join of G_1 and G_2, denoted by $G_1 \vee G_2$, as shown in the figure.

Apply algorithm (1) on $G_1 \vee G_2$, we find that $\chi(G_1 \vee G_2) > \max \{\chi(G_1), \chi(G_2)\}$

The Cartesian product of two permutation graphs:

The Cartesian product of two permutation graphs G and H is the graph $G \times H$ whose vertex set is the Cartesian product $V(G) \times V(H)$ and whose edges are the pairs $(g,h),(g_1,h_1)$ for which one of the following holds:

1) $g = g_1$ and $hh_1 \in E(H)$ or
2) $gg_1 \in E(G)$ and $h = h_1$.

As shown in figure (6), the Cartesian product of two graphs is connected if and only if G and H are connected and bipartite if and only if both G and H are bipartite. The chromatic number of $G \times H = \max \{\chi(G), \chi(H)\}$.

Apply algorithm (1) on the graph in figure (6) we found $\chi(G \times H) = 3$, which is the max of $\chi(G), \chi(H)$.

References

