
Omar MBAO¹, Moustapha THIAME¹, Ibrahima Ly², Ibrahima DATTA¹, Marcel .S. DOUF¹, Youssou TRAORE¹, Mor NDIAYE² And Grégoire SISSOKO¹

¹Laboratoire des Semi-conducteurs et d’Energie Solaire, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
²Ecole Polytechnique de Thiès, Sénégal

Abstract
In this work, for simultaneous illumination of both sides of the polycrystalline bifacial silicon solar cell, we study the influence of grain size and recombination velocity at grain boundaries, on the macroscopic and microscopic parameters. The study allows us understanding why the carrier density, current density and photovoltage have lower values than those collected on the monocrystalline Si when the solar cell is illuminated simultaneously by both sides.

It highlighted the electrical parameters degradation of the solar cell as photocurrent, short-circuit current, photovoltage and open circuit voltage, when grain size decreases or when recombinations at grain boundaries are high.

Keywords
"polycrystalline Si" "simultaneous illumination" "carrier density" "current density" "photovoltage" "recombination velocity" "grain size"

1. INTRODUCTION
In order to improve the quality of solar cells, many studies have been conducted on the polycrystalline Si in order to control the photovoltaic conversion.

The latter is governed by the processes as the generation of electron-hole pairs, their diffusion and recombination [1,2]. So it is limited by the presence of the Si material manufacturing defects which mastery would increase the cell efficiency.

Among these defects, we have the grain boundaries formed among silicon crystals that are responsible, among other, of charge carriers recombination photogenerated in volume [3-5].

The objective of this study is to analyze the influence of recombination at grain boundaries and the crystal size called grain on the electrical parameters of the polycrystalline Si solar cell. Thus, from a 3D modeling, we will determine an expression of the minority carriers density in the base when the solar cell is illuminated simultaneously by both sides by a constant multispectral light.

This expression of the carrier density will allow us to determine the expression of the photocurrent, the photovoltage, the short-circuit current, the open circuit voltage, the back surface recombination velocity, and study the influence of grain boundaries recombination and grain size on these parameters.

2. THEORITICAL ANALYSIS
The BSF polycrystalline silicon solar cell studied is an n^-p-p^- structure as shown in figure 1.a. Silicon consisting of several grain of various sizes, for our study, we use the 3D columnar model where each grain has a rectangular shape as shown in figure1.b below [3,6,7].
In this study, we assume that:
- the contribution of the emitter is neglected. We take into account only the base contribution [3],
- the illumination is uniform. We then have a generation rate depending only with base depth z [8];
- the existing crystalline field within the base is neglected.
- in the simulation, we have equality between the grain size along x and y axes, i.e. $g_x = g_y = g$(square cross section), and that the recombination velocity at grain boundaries is perpendicular to the junction and independent to the generation rate under AM 1.5 [3,9].

For both side simultaneous illumination of the solar cell with a constant multispectral light, excess carriers in the base of the solar cell are governed by the following continuity equation:

$$\sum \frac{\partial^2 \delta(x, y, z)}{\partial x^2} + \frac{\partial^2 \delta(x, y, z)}{\partial y^2} \cdot \frac{\partial^2 \delta(x, y, z)}{\partial z^2} = \frac{\delta(x, y, z)}{L^2} - \frac{1}{D} \sum_{i=1}^{3} a_i \cdot \{\exp(-b_i \cdot z) + \exp(-b_i \cdot (wb - z))\} $$

(1)

In this equation: L is the diffusion length, D the diffusion coefficient, a_i and b_i the solar radiation tabulated values and the dependence of silicon absorption coefficient with wavelength for AM = 1.5 [10,11].

A general solution of the continuity equation (1) can be expressed as [3,9]:

$$\delta(x, y, z) = \sum_k \sum_j Z_k, (z) \cdot \cos(c_k x) \cos(c_j y)$$

(2)

where c_k and c_j are values obtained from the following grain boundary conditions at $\pm \frac{g_x}{2}$ and $\pm \frac{g_y}{2}$ [2,3]:

$$\frac{\partial \delta(x, y, z)}{\partial x} \bigg|_{x = \pm \frac{g_x}{2}} = \frac{S_{gb}}{D} \cdot \delta(x, \pm \frac{g_x}{2}, y, z) \quad (3)$$

$$\frac{\partial \delta(x, y, z)}{\partial y} \bigg|_{y = \pm \frac{g_y}{2}} = \frac{S_{gb}}{D} \cdot \delta(x, \pm \frac{g_y}{2}, y, z) \quad (4)$$

Equations (3) and (4) define a grain boundary recombination velocity S_{gb} that traduces how excess carriers flow trough grain boundaries; g_x and g_y are the grain sizes according to x and y axis.

Replacing $\delta(x, y, z)$ by its expression into the above two boundary conditions lead to the following transcendental equations:
\[c_k \cdot \tan(c_k \cdot \frac{gx}{2}) = \frac{Sgb}{D} \] \hspace{1cm} (5)

\[c_j \cdot \tan(c_j \cdot \frac{gy}{2}) = \frac{Sgb}{D} \] \hspace{1cm} (6)

c\(_k\) and c\(_j\) are eigen values of these transcendental equations solved graphically. Replacing \(\delta(x, y, z) \) in the continuity equation and using the fact that the cosine functions are orthogonal we obtain the following expression of \(Z_{k,j}(z) \):

\[
Z_{k,j}(z) = O_{k,j} \cdot c h(\frac{z}{L_{k,j}}) + P_{k,j} \cdot s h(\frac{z}{L_{k,j}}) - \sum_{j=1}^{3} K_j \cdot \left\{ \exp(-b_j \cdot z) + \exp(-b_j \cdot (wb - z)) \right\}
\] \hspace{1cm} (7)

In this expression:

\[
L_{k,j} = \left[c^2_k + c^2_j + L^2 \right]^{\frac{1}{2}}
\] \hspace{1cm} (8)

\[
K_i = \frac{L_{k,j}^2}{D_{k,j} b^2 - 1} \cdot a_i
\] \hspace{1cm} (9)

and

\[
D_{k,j} = \frac{D \cdot \sin(c_k \cdot gx) + c_k \cdot gx \cdot \sin(c_j \cdot gy) + c_j \cdot gy}{16 \cdot \sin(c_k \cdot \frac{gx}{2}) \cdot \sin(c_j \cdot \frac{gy}{2})}
\] \hspace{1cm} (10)

Constants \(O_{k,j} \) and \(P_{k,j} \) are calculated by mean of the boundary conditions [3, 11, 13]:

at the \(n^-p \) surface \((z = 0)\):

\[
O_{k,j} = \sum_{i=1}^{3} K_{k,j} \left(\frac{SF}{D} + h_i \right) + \frac{1}{L_{k,j}} \left(\frac{SB}{D} + b_i \right) + \left[Y_{k,j} \left(\frac{SF}{D} - h_i \right) + \frac{1}{L_{k,j}} \left(\frac{SB}{D} - b_i \right) \right] \cdot \exp(-b_i \cdot wb)
\] \hspace{1cm} (13)

at the back surface \((z = wb)\):

\[
P_{k,j} = \sum_{i=1}^{3} K_{k,j} \left(\frac{SF}{D} + h_i \right) - X_{k,j} \left(\frac{SF}{D} + b_i \right) + \left[\frac{SF}{D} \left(\frac{SB}{D} - b_i \right) - X_{k,j} \left(\frac{SF}{D} + b_i \right) \right] \cdot \exp(-b_i \cdot wb)
\] \hspace{1cm} (14)

with:

\[
X_{k,j} = \frac{1}{L_{k,j}} \cdot s h(\frac{wb}{L_{k,j}}) + \frac{SB}{D} \cdot c h(\frac{wb}{L_{k,j}})\] and \(Y_{k,j} = \frac{1}{L_{k,j}} \cdot c h(\frac{wb}{L_{k,j}}) + \frac{SB}{D} \cdot s h(\frac{wb}{L_{k,j}})
\] \hspace{1cm} (15) and (16)
2. RESULTS ET DISCUSSIONS

2.1. Excess minority carrier density

Figures 2 and 3 present profiles of excess minority carrier density as a function of base depth, respectively for different grain boundaries recombination velocity and different grain size.

![Figure 2](image1.png)

Figure (2): Profile of the excess minority carrier density as a function of depth z in the base for different S_{gb}; $g=0.005 \text{cm/s}$, $S_f=3 \times 10^3 \text{cm/s}$, $S_b=3 \times 10^3 \text{cm/s}$, $wb=0.03 \text{cm}$ and AM1.5

These figures show that for simultaneous illumination of the solar cell by both front and back sides, the minority carrier density in the base decreases when moving deeply in the base. A maximum of carriers is photogenerated in these sides. The carrier density is low when approaching the center of the base [3,16], according to Fick law for thick base depth effect.

These profiles also highlight the effect of the grain size and grain boundaries recombination on the carrier density. The decrease in the grain size causes a decrease of the carrier density [3]. Indeed, the reduction in grain size leads to an increase of recombination centers at the grain boundaries.

We also note that the higher the recombination velocity at the grain boundaries, the more the carrier density is small. This variation highlights the effect of recombination at the joints.

2.2. Photocurrent density

From the expression of the minority carriers density in the base, we obtain the expression of the photocurrent density from the following relationship [3,15,17]:

$$J=q \cdot D \cdot \frac{g_x \cdot g_y}{g_x \cdot g_y} \left[\frac{\partial \phi(x,y,z)}{\partial z} \right]_{z=0} \cdot dx \cdot dy$$

After calculation we get:

$$J=q \cdot D \cdot \sum_{k} \sum_{j} R_{k,j} \left(\frac{P_{k,j}}{L_{k,j}+\sum_{j=1}^{3} K_{k,j} \cdot b_{j} \left[1-\exp\left(-b_{j} \cdot wb \right) \right] } \right)$$

with $R_{k,j} = \frac{4 \sin\left(\frac{C_i \cdot g_x}{2} \right) \cdot \sin\left(\frac{C_j \cdot g_y}{2} \right)}{g_x \cdot g_y \cdot C_i \cdot C_j}$

We plot at figures 4 and 5 the photocurrent density profiles as a function of junction recombination velocity, respectively for different grain sizes and different grain boundaries recombination velocities.
The profiles show that the photocurrent density have two levels: the first corresponding to the solar cell in open circuit mode is obtained for low junction recombination velocity (lower to $2 \times 10^{13} \text{cm}^2/\text{s}$); the second corresponding to the solar cell in short circuit mode is obtained when S_f is higher than $5 \times 10^{11} \text{cm/s}$. Between these two levels, the photocurrent density increases progressively with S_f, which corresponds to different operating points of the solar cell [3].

The photocurrent density highly decreases when the grain size decreases and when the recombination velocity at the grain boundaries increases.

These figures therefore emphasize the degradation of the photocurrent density when the recombination centers are important in the solar cell base substrate.

2.3. Short circuit current

The short circuit current density J_{sc} is obtained from the photocurrent density for large values of the recombination velocity at the junction [3,11].

It is given by the following expression

$$J_{sc} = \lim_{S_f \geq 5 \times 10^{11} \text{cm/s}} J$$ \hspace{1cm} (20)

After calculation, we obtain an expression of the short-circuit current density when the solar cell is illuminated simultaneously by both sides:

$$J_{cc} = q \cdot D \cdot \sum_{s} \sum_{j} \left(\sum_{i} R_{i,j} \cdot L_{i,j} \cdot \sum_{i} K_{i,j} \cdot \left[\frac{1}{Y_{k,j}} \left(\frac{S_b}{D} \cdot h - \frac{X_{k,j}}{Y_{k,j}} \cdot h \right) \cdot L_{k,j} \right] + \sum_{i} \left[\frac{1}{Y_{k,j}} \left(\frac{S_b}{D} \cdot h - \frac{X_{k,j}}{Y_{k,j}} \cdot L_{k,j} \right) \cdot \exp(-h \cdot w) \right] \right) \hspace{1cm} (21)$$

Figures 6 and 7 highlight the influence of the grain size and the recombination velocity at the joints on the short-circuit current density.
These profiles show that the short-circuit current density generally decreases as the recombination velocity at the grain boundaries increases. It considerably increases as the grain size increases. Recombination at grain boundaries have a powerful influence on the short-circuit current when the grain size is small.

For large grain size and low recombination velocities, the short-circuit current is almost constant and is substantially equal to that delivered by a monocrystalline solar cell simultaneously illuminated by both sides [9].

\[V = V_T \cdot \ln \left[1 + \frac{N}{n_i^2} \cdot \sum_{j} \frac{e^{\frac{\Phi_j}{kT_j}}}{\Phi_j^2} \delta(x,y,0) \right] \]

(22)

When the photocell is illuminated simultaneously by the front and rear sides, the photovoltage is given by the following expression:

\[V = V_T \cdot \ln \left[1 + \frac{N}{n_i^2} \cdot \sum_{j} \frac{e^{\frac{\Phi_j}{kT_j}}}{\Phi_j^2} \delta(x,y,0) \right] \]

(23)

In figures 4 and 5, we plot photovoltage profiles versus recombination velocity at the junction, respectively for different grain boundaries recombination velocities and grain sizes.
The profiles show that the photovoltage has a horizontal bearing for low values of the recombination velocity at the junction ($S_f \leq 2.10^2 \text{P}^2 \text{Pcm/s}$). In this area, the voltage is maximum, which corresponds to an open circuit mode of the solar cell. It then decreases when S_f increases.

There is also an overall decrease in the photovoltage when the recombination velocity at grain boundaries increases and when the grain size decreases. The effect of grain size and S_f on the photovoltage occurs more for low S_f values(open circuit).

The expression of this open circuit voltage for simultaneous illumination by both sides is given by:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

Expression of this open circuit voltage for simultaneous illumination by both sides is given by:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

2.5. Open circuit photovoltage

In open circuit, the recombination velocity at the junction tends to zero. So we get the expression of the open circuit photovoltage in exploiting the following equation [3,11]:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

2.5. Open circuit photovoltage

In open circuit, the recombination velocity at the junction tends to zero. So we get the expression of the open circuit photovoltage in exploiting the following equation [3,11]:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

2.5. Open circuit photovoltage

In open circuit, the recombination velocity at the junction tends to zero. So we get the expression of the open circuit photovoltage in exploiting the following equation [3,11]:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

2.5. Open circuit photovoltage

In open circuit, the recombination velocity at the junction tends to zero. So we get the expression of the open circuit photovoltage in exploiting the following equation [3,11]:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

2.5. Open circuit photovoltage

In open circuit, the recombination velocity at the junction tends to zero. So we get the expression of the open circuit photovoltage in exploiting the following equation [3,11]:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

2.5. Open circuit photovoltage

In open circuit, the recombination velocity at the junction tends to zero. So we get the expression of the open circuit photovoltage in exploiting the following equation [3,11]:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

2.5. Open circuit photovoltage

In open circuit, the recombination velocity at the junction tends to zero. So we get the expression of the open circuit photovoltage in exploiting the following equation [3,11]:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

2.5. Open circuit photovoltage

In open circuit, the recombination velocity at the junction tends to zero. So we get the expression of the open circuit photovoltage in exploiting the following equation [3,11]:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$

2.5. Open circuit photovoltage

In open circuit, the recombination velocity at the junction tends to zero. So we get the expression of the open circuit photovoltage in exploiting the following equation [3,11]:

$$V_{co} = V \left(S_f \leq 2.10^2 \text{cm/s} \right)$$
The open-circuit photovoltage decreases according to the recombination velocity at the grain boundaries. This decrease is even more remarkable when the grain size is small. The quality of the solar cell deteriorates when the grain size is small.

2.6 Current - voltage characteristics

The current - voltage characteristic is obtained by plotting current density $J(sf)$ versus photovoltage $V(sf)$ [19]. In this section we study the influence of grain size and grain boundaries recombination velocity on the current-voltage characteristic.
When the photo voltage is zero, the photocurrent corresponds to the short-circuit current and when the current tends to zero, the voltage is the open circuit one. Figure 12 represents the current-voltage characteristic for different grain sizes. It generally decreases as grain size decreases [2, 20, 21].

Figure 13, which corresponds to the profile of current-voltage characteristics for different grain recombination velocities, shows an overall decrease in voltage and photocurrent when grain boundaries recombination increases [2, 22].

When the grain size decreases from 0.2 cm to 0.005 cm, there is a decrease of the short-circuit current of approximately 45% and a reduction of the open circuit voltage by approximately 15%. As regards the recombination velocity at the grain boundaries, an increase from 10 cm/s to 10^3 cm/s, causes a reduction of the short-circuit current of about 40% and a decrease in the open circuit voltage about 15%. This confirms the deterioration of the quality of the solar cell in the presence of many grain boundaries [20, 22].

3.4. Recombination parameters: back surface recombination velocity S_b.

For illumination of the solar cell simultaneously by the front and back, we have previously noted a strong presence of charge carriers near the back surface. This will be the headquarters of strong recombination of photocreated carriers [3]. Control back surface recombining parameters would be useful to improve the quality of bifacial photovoltaic cells. Thus, to determine the back surface recombination velocity, we consider that the current density is the sum of many small current densities $j_{k,j}$, depending on the solutions of transcendental equations (5) and (6) [3]:

$$J = \sum_k \sum_j J_{k,j} \quad (26)$$

with:

$$J_{k,j} = q \cdot R_{k,j} \cdot S_f \cdot \sum_{i=1}^3 K_{k,j} \cdot \frac{S_b - D \cdot b_i}{D \cdot Y_{k,j}} \cdot \exp(-b_i \cdot w) - \frac{X_{k,j}}{Y_{k,j}} + b_i \cdot L_{k,j} \cdot \frac{X_{k,j}}{Y_{k,j}} + \frac{S_f \cdot L_{k,j}}{D}$$

(27)

Knowing that the photocurrent density has a horizontal bearing for very large values of the recombination velocity at the junction S_f, we can write [3, 11, 21]:

$$\left(\frac{\partial J}{\partial S_f} \right)_{S_f \geq 5 \times 10^3 \text{cm/s}} = 0 \quad (28)$$

We thus have a new expression of $S_{b_{k,j}}$ that describes how the minority carriers in the base recombine at the back surface when the solar cell is illuminated simultaneously by both sides with a constant multispectral light, with a recombination velocity depending on c_k and c_j solutions of transcendental equations (5) and (6).

$$S_{b_{k,j}} = -\frac{D}{L_{k,j}} \sum_{i=1}^3 K_j \left[b_i \cdot L_{k,j} \cdot \cosh\left(\frac{w b_{i,j}}{L_{k,j}}\right) + \sinh\left(\frac{w b_{i,j}}{L_{k,j}}\right) \right] \exp(-b_i \cdot w) - b_i \cdot L_{k,j} \cdot \cosh\left(\frac{w b_{i,j}}{L_{k,j}}\right)$$

$$+ \sum_{i=1}^3 K_j \left[\cosh\left(\frac{w b_{i,j}}{L_{k,j}}\right) - b_i \cdot L_{k,j} \cdot \sinh\left(\frac{w b_{i,j}}{L_{k,j}}\right) \right] \exp(-b_i \cdot w) + 1 - \cosh\left(\frac{w b_{i,j}}{L_{k,j}}\right) + b_i \cdot L_{k,j} \cdot \sinh\left(\frac{w b_{i,j}}{L_{k,j}}\right)$$

(29)

Figure 14 represents its profile versus the recombination velocity at the grain boundaries for different grain size.
Profiles highlight an increase in the back surface recombination velocity when the recombination velocity at grain boundaries increases. This increase is more remarkable when the grain size is small. For high values of grain size, the back surface recombination is almost independent of recombination at grain boundaries [3]. The low grain sizes correspond to a massive presence of grain boundaries on the rear with a consequent increase in recombination of carriers photogenerated at back surface.

CONCLUSION
Considering the 3D columnar grain model of the polycrystalline silicon, we have studied the influence of recombination velocity at grain boundaries and the grain size on the parameters of the polycrystalline bifacial silicon solar cell as the density of carriers, the photocurrent, the photovoltage, the short-circuit current, the open circuit voltage and the back surface recombination velocity. The study allowed assessing the degradation of these parameters when grain size decreases or when recombination at grain boundaries increases. It helps in understanding the difference between monocrystalline and polycrystalline silicon. It also enables to see when going from low grain sizes to large grain size, we have a strong reduction in recombination of carriers in the base, because the grain boundaries which are recombination centers in the substrate decrease.

References
[1] Ryuichi Shimokawa and Yutaka Hayachi
Grain boundary effects in polycrystalline silicon solar cells I: Solution of the three dimensional diffusion equation by the green’s function method Solar Cells, Vol. 8, Pp 201-223, (1983)
[8] MUZEYYEN SARITAS and HARRY D. MCKELL
Comparison of Minority-Carrier Diffusion Length Measurements in Silicon by the Photoconductive Decay and Surface Photovoltage Methods, J. Appl. Phys. 63 (9), (1988),pp4561-4567

Determination of the impact of the grain size and the recombination velocity at grain boundary on the values of the electrical parameters of a bifacial poly-Crystalline silicon solar cell”.