Design and Implementation of Area Optimized Low Power Reversible Digital Multiplier

Deva Kumar Talluri1, Venkateswara Reddy B2 and Bala Krishna P3

1 ECE, Vikas Group of Institutions, Vijayawada, Andhra Pradesh 521 212, India
2 ECE, Vikas Group of Institutions, Vijayawada, Andhra Pradesh 521 212, India
3 ECE, Vikas Group of Institutions, Vijayawada, Andhra Pradesh 521 212, India

Abstract
Heat generation is the major drawback in conventional or irreversible electronic circuits or systems. In 1961, Rolf landaeur proved this drawback. But in 1973, Benett given the solution for this drawback. Benett told that, there will be no or very less heat generation or energy dissipation, if the computation was reversible. So, the reversible logic is a solution for this drawback. Reversible logic can avoid the problem of heat generation, improves the system performance. This paper proposed an area optimized low power reversible digital multiplier. It was implemented in Xilinx-Spartan 6 FPGA board and designed in SYMICA DE tool with final results.

Keywords: Baugh-Wooley Approach, Complementary Pass Transistor Logic, Standard Reversible Logic Gates, Wallace Signed Multiplication.

1. Introduction
Almost all the millions of gates used to perform logical operations in a conventional computer are irreversible. That is, every time a logical operation is performed some information about the input is erased or lost and is dissipated as heat. Reversible logic is gaining interest in the recent past due to its less heat dissipating characteristics. It has been proved that any Boolean function can be implemented using reversible gates. In 1961, Rolf landaeur [1] proves that, in conventional logic, gate operations will lead to energy dissipation regardless of technology. Exactly, kTln2 joules of energy will dissipate due to each lost bit of information. K is the Boltzmann's constant; T is the absolute temperature at which computation is performed. In 1973, Benett [2] proved that kTln2 joules of energy dissipation would not occur if the computation were carried out in a reversible manner. Reversible logic naturally takes care of heating because it implements only the functions that have one to one mapping between its inputs and outputs. Reversible logic gate can produce zero power dissipation under ideal conditions. This paper presented a reversible Wallace signed multiplier through modified baugh-wooley approach using standard reversible logic gates based on complementary pass transistor logic. Authors implemented proposed circuit in Full custom ASIC and tested the design in 45nm CMOS technology.

The Wallace [10] approach has been used to construct a circuit with less delay. Multiplier circuits are divided into two categories: unsigned and signed. Several approaches have been presented to multiply the signed numbers, such as 2's complement, Baugh-Wooley [12], and modified Baugh-Wooley methods. In modified Baugh-Wooley method, the number quantity is considered as 2's complement.

2. Reversible Logic

2.1 Reversible Logic
A gate is reversible if there is a distinct output assignment for each distinct input. Thus, a reversible gate inputs can be uniquely determined from its outputs. A reversible logic [9] gate must have the same number of inputs and outputs.

2.2 Reversible vs Ir-reversible Logic, Standard Reversible Logic Gates

Conventional logic gates are ir-reversible. In reversible logic the number of inputs & outputs of a gate are equal,
where as in conventional logic they are not equal. Fanout is not possible in reversible logic. In reversible logic to achieve reversibility constant inputs & garbage outputs are necessary. In reversible logic, we can achieve output both in forward & reverse paths i.e. we can compute and uncompute the results. Feedback paths are not allowed in reversible logic. Reversible NOT, Feynman gates are called basic reversible gates. Feynman gate is also called CNOT gate. Authors used three standard reversible logic gates to construct proposed multiplier. They are toffoli \[3],[4] \text{ gate(TG)}, \text{ peres}[5] \text{ gate(PG)}, \text{ haghparast navi}[6],[7] \text{ gate(HNG)}. TG, PG are 3*3, HNG is 4*4 gate. PG is one through, TG and HNG are two through gates. TG is a universal reversible logic gate. Two peres gates can be combined to form a full adder.

![Fig. 1 Symbol of HNG Gate.](image1)

![Fig. 2 Logic Diagram of Toffoli Gate.](image2)

![Fig. 3 Truth Table of Peres Gate.](image3)

![Fig. 4 Xor Gate Schematic in Symica.](image4)

![Fig. 5 Test Bench of AND Gate in Symica.](image5)

3. Proposed Reversible Multiplier and Results

Proposed reversible multiplier is 5-bit. Authors denoted inputs of multiplier as A, B. \(A=10101, B=01010\) and the multiplication result is 1110010010. Here, input and output values are in 2’s complement. Fig. 6 shows partial product generation and addition, fig.7 shows overall multiplication, fig.8 shows Xilinx Isim simulator output and fig.9 shows symica waveforms. For the proposed circuit 10 garbage outputs, 21 constant inputs, 1 NOT gate are required. For partial product generation 25 TG gates are required. For partial product addition 4 PG gates, 16 HNG gates are required. Garbage output refers to the number of outputs which are not used in the synthesis of a given function. These are very essential without this reversibility cannot be achieved. Constant inputs refer to the number of inputs that are to be maintained constant at either 0 or 1 in order to synthesize the given logical function.
Fig. 6 Partial Product Generation and Addition.

Fig. 7 Overall Multiplication.

Fig. 8 Xilinx Isim Simulator Output.

Fig. 9 Symica Waveforms.

Fig. 10 shows power requirement. Table I shows the power requirement comparison and Table II shows the transistor requirement comparison. Power requirement of existed multiplier[13] with 45nm technology is 6µw, where as in proposed multiplier with 45nm technology it is 5µw. Transistor requirement of existed multiplier[13] is 912, where as in proposed multiplier it is 818.
4. Conclusions

The main advantage of reversible logic is low power dissipation. Reversible logic has many applications such as low power CMOS, Nano technology, quantum computing, optical information processing, DNA computing, bioinformation, laptop, handheld and wearable computers etc. By using this reversible logic concept, so many authors developed some standard reversible logic gates or circuits, which are useful to design and implement reversible logic systems. Multiplier is the one of its kind & it is the most useful digital circuit or system. In fact, every computational system needs multiplier. So far, so many authors proposed various reversible multiplier circuits. In 2014, Hatkar A.P & Hatkar A.A proposed "ASIC design of reversible multiplier circuit" [12]. And in 2015, K. Pradeep and team proposed "Design and implementation of H/W efficient Multiplier: Reversible logic gate approach" [13]. This paper, successfully implemented and designed an area optimized low power reversible digital multiplier, and proved that it was a power & hardware efficient multiplier when compared to existed multipliers [12][13].

Acknowledgments

Authors thankful to Mr. S. Kishore Babu, HOD, Department of Electronics & Communication Engineering, Vikas group of institutions, Vijayawada, INDIA, for his support and valuable suggestions.

References

First Author He has completed polytechnic diploma(DECE) from SVKP Polytechnic, Cumbum in 2004, he has also completed BTech(ECE) from Vignan’s Institute of Information Technology, Duvvada in 2008, and he currently pursuing MTech(DECS) from Vikas Group of Institutions, Nunna; He has worked as an associate lecturer in SES-SNM Polytechnic, Khammam, and he has also worked as an assistant professor in Amrita Sai Institute of Science & Technology, Paritala; His current research interests are VLSI & Microelectronics; He is a life member of Indian Society for Technical Education (ISTE).

Second Author He is working as a professor and head of ECE department in Vikas College of Engineering & Technology, Nunna, Vijayawada.

Third Author He is working as an assistant professor of ECE department in Vikas Group of Institutions, Nunna, Vijayawada.