Soft Structures on Fuzzy Version of Soft INT G-Modules

R.Nagarajan¹, S. Saleem Abdullah², K. Balamurugan³

¹. Associate Professor, Department of Mathematics, J J College of Engg & Tech, Trichirappalli-09
². Associate Professor, Department of Mathematics, Hazara University, Pakistan
³. Assistant Professor, M.A.M School of Engineering, Trichirappalli-105

Abstract: In this paper, we introduce fuzzy version of soft int-G-modules of a vector space with respect to soft structures, which are fuzzy soft int-G-modules (IFSG-module). These new concepts show that how a soft set affects on a G-module of a vector space in the mean of intersection, union and inclusion of sets and thus, they can be regarded as a bridge among classical sets, fuzzy soft sets and vector spaces. We then investigate their related properties with respect to soft set operations, soft image, soft pre-image, soft anti image, α-inclusion of fuzzy soft sets and linear transformations of the vector spaces. Furthermore, we give the applications of these new G-module on vector spaces.

Keywords: Soft set, IFSG-module, fuzzy soft image, fuzzy soft anti image, α-inclusion, trivial, whole.

1. Introduction: Most of the problems in economics, engineering, medical science, environments etc. have various uncertainties. We cannot successfully use classical methods to solve these uncertainties because of various uncertainties typical for those problems. Hence some kinds of theories were given like theory of fuzzy sets [44], rough sets [17], i.e., which we can use as mathematical tools for dealing with uncertainties. However, all of these theories have their own difficulties which are pointed out in [15]. Soft set theory was introduced by Molodtsov [29] for modeling vagueness and uncertainty and it has been received much attention since Maji et al [27], Ali et al [6] and Sezgin and Atagun [34] introduced and studied operations of soft sets. Soft set theory has also potential applications especially in decision making as in [10, 11, 27]. This theory has started to progress in the mean of algebraic structures, since Aktas, and Cagman [5] defined and studied soft groups. Since then, soft substructures of rings, fields and modules [8], union soft substructures of near-rings and near-ring modules [35], normalistic soft groups [32] are defined and studied in detailed. Soft set has also been studied in the following papers [1, 2, 3, 25, 26, 45]. The theory of G-modules originated in the 20th century. Representation theory was developed on the basis of embedding a group G in to a linear group GL(V).
The theory of group representation (G module theory) was developed by Frobenious G [1962]. Soon after the concept of fuzzy sets was introduced by Zadeh [44] in 1965. Fuzzy subgroup and its important properties were defined and established by Rosenfeld [31] in 1971. After that in the year 2004 Shery Fernandez [36] introduced fuzzy parallels of the notions of G-modules. This study is of great importance since IFSG-modules show how a fuzzy soft set affect on a G-module of a vector space in the mean of intersection, union and inclusion of sets, so it functions as a bridge among classical sets, soft sets and vector spaces. In this paper, we introduce intersection fuzzy soft G-modules of a vector space that is abbreviated by IFSG-module and investigate its related properties with respect to fuzzy soft set operations. Then we give the application of fuzzy soft image, fuzzy soft pre image, upper α-inclusion of fuzzy soft sets, linear transformations of vector spaces on vector spaces in the mean of IFSG-modules. Moreover, we apply soft pre image, soft anti-image, lower α-inclusion of soft sets, linear transformations of vector spaces on these fuzzy soft G-modules. The work of this paper is organized as follows. In the second section as preliminaries, we give basic concepts of soft sets and fuzzy soft G-modules. In Section 3, we introduce IFSG-modules and study their characteristic properties. In Section 4, we give the applications of IFSG-modules.

2. Preliminaries: In this section as a beginning, the concepts of G-module[36] soft sets introduced by Molodsov [29] and the notions of fuzzy soft set introduced by Maji et al. [26] have been presented.

2.1 Definition [36]: Let G be a finite group. A vector space M over a field K (a subfield of C) is called a G-module if for every $g \in G$ and $m \in M$, there exists a product (called the right action of G on M) $m.g \in M$ which satisfies the following axioms.

1. $m.1_G = m$ for all $m \in M$ (1_G being the identify of G)
2. $m. (g.h) = (m.g). h$, $m \in M$, $g, h \in G$
3. $(k_1 m_1 + k_2 m_2). G = k_1 (m_1.G) + k_2 (m_2.G)$, $k_1, k_2 \in K$, $m_1, m_2 \in M$ & $g \in G$. In a similar manner the left action of G on M can be defined.

2.2. Definition [36]: Let M and M^* be G-modules. A mapping $\mathcal{O}: M \rightarrow M^*$ is a G-module homomorphism if

1. $\mathcal{O}(k_1 m_1 + k_2 m_2) = k_1 \mathcal{O}(m_1) + k_2 \mathcal{O}(m_2)$
2. $\mathcal{O}(gm) = g \mathcal{O}(m)$, $k_1, k_2 \in K$, $m, m_1, m_2 \in M$ & $g \in G$.

2.3. Definition [36]: Let M be a G-module. A subspace N of M is a G-submodule if N is also a G-module under the action of G.

Let U be a universe set, E be a set of parameters, $P(U)$ be the power set of U and $A \subseteq E$.

2.4. Definition [29]: A pair (F, A) is called a soft set over U, where F is a mapping given by $F : A \rightarrow P(U)$.

In other words, a soft set over U is a parameterized family of subsets of the universe U.

Note that a soft set (F, A) can be denoted by F_A. In this case, when we define more than one soft set in some subsets A, B, C of parameters E, the soft sets will be denoted by F_A, F_B, F_C, respectively. On the other case, when we define more than one soft set in a subset A of the set of parameters E, the soft sets will be denoted by F_A, G_A, H_A, respectively. For more details, we refer to [11,17,18,26,29,7].

2.5. Definition [6]: The relative complement of the soft set F_A over U is denoted by F_A^c, where $F_A^c : A \rightarrow P(U)$ is a mapping given as $F_A^c(a) = U \setminus F_A(a)$, for all $a \in A$.

2.6. Definition [6]: Let F_A and G_B be two soft sets over U such that $A \cap B \neq \emptyset$. The restricted intersection of F_A and G_B is denoted by $F_A \downarrow G_B$, and is defined as $F_A \downarrow G_B = (H, C)$, where $C = A \cap B$ and for all $c \in C, H(c) = F(c) \cap G(c)$.

2.7. Definition [6]: Let F_A and G_B be two soft sets over U such that $A \cap B \neq \emptyset$. The restricted union of F_A and G_B is denoted by $F_A \uparrow R G_B$, and is defined as $F_A \uparrow R G_B = (H, C)$, where $C = A \cap B$ and for all $c \in C, H(c) = F(c) \cup G(c)$.

2.8. Definition [12]: Let F_A and G_B be soft sets over the common universe U and ψ be a function from A to B. Then we can define the soft set $\psi(F_A)$ over U, where $\psi(F_A) : B \rightarrow P(U)$ is a set valued function defined by $\psi(F_A)(b) = \bigcup \{F(a) \mid a \in A \text{ and } \psi(a) = b\}$, if $\psi^{-1}(b) \neq \emptyset$, $= 0$ otherwise for all $b \in B$. Here, $\psi(F_A)$ is called the soft image of F_A under ψ.

Moreover we can define a soft set $\psi^{-1}(G_B)$ over U, where $\psi^{-1}(G_B) : A \rightarrow P(U)$ is a set-valued function defined by $\psi^{-1}(G_B)(a) = G(\psi(a))$ for all $a \in A$. Then, $\psi^{-1}(G_B)$ is called the soft preimage (or inverse image) of G_B under ψ.

2.9. Definition [13]: Let F_A and G_B be soft sets over the common universe U and ψ be a function from A to B. Then we can define the soft set $\psi^*(F_A)$ over U, where $\psi^*(F_A) : B \rightarrow P(U)$ is a set-valued function defined by $\psi^*(F_A)(b) = \bigcap \{F(a) \mid a \in A \text{ and } \psi(a) = b\}$, if $\psi^{-1}(b) \neq \emptyset$, $= 0$ otherwise for all $b \in B$. Here, $\psi^*(F_A)$ is called the soft antiimage of F_A under ψ.
2.1. Theorem [13]: Let F_H and T_K be soft sets over U, F'_H, T'_K be their relative soft sets, respectively and ψ be a function from H to K. Then, i) $\psi^{-1}(T'_K) = (\psi^{-1}(T_K))'$, ii) $\psi(F'_H) = (\psi(F_H))'$ and $\psi^*(F'_H) = (\psi(F_H))'^*$.

2.10. Definition [14]: Let F_A be a soft set over U and A be a subset of U. Then, upper α-inclusion of F_A, denoted by $F_A \supseteq \alpha$, is defined as $F_A \supseteq \alpha = \{x \in A | F(x) \supseteq \alpha\}$. Similarly, $F_A \subseteq \alpha = \{x \in A | F(x) \subseteq \alpha\}$ is called the lower α-inclusion of F_A. A nonempty subset U of a vector space V is called a subspace of V if U is a vector space on F. From now on, V denotes a vector space over F and if U is a subspace of V, then it is denoted by $U < V$.

3. IFSG-modules: In this section, we first define intersection fuzzy soft G-modules of a vector space, abbreviated as IFSG-modules. We then investigate its related properties with respect to soft set operations.

Let G be a non-empty set. A fuzzy subset μ on G is defined by $\mu : G \rightarrow [0,1]$ for all $x \in G$.

3.1. Definition: Let G be a group. Let M be a G-module of V and A_M be a fuzzy soft set over V. Then A_M is called Intersection Fuzzy Soft G-module of V (IFSG-m), denoted by $A_M \subsetneq_i V$ if the following properties are satisfied

\begin{align*}
(IFSG-m_1) & \quad A(ax + by) \supseteq A(x) \cap A(y) \\
(IFSG-m_2) & \quad A(\alpha x) \supseteq A(x), \text{ for all } x, y \in M, a, b, \alpha \in F.
\end{align*}

Example: Let $G = \{1, -1\}$, $M = R^4$ over R. Then M is a G-module.

Define A on M by,

$$A(x) = \begin{cases}
1, & \text{if } x_i = 0 \forall i. \\
0.5, & \text{if at least } x_i \neq 0.
\end{cases}$$

Where $x = \{x_1, x_2, x_3, x_4\}$; $x_i \in R$. Then A is a fuzzy soft G-Module.

3.1. Proposition: If $A_M \subsetneq_i V$, then $A(0v) \supseteq A(x)$ for all $x \in M$.

Proof: Since A_M is an IFSG-module of V, then $A(ax + by) \supseteq A(x) \cap A(y)$ for all $x, y \in M$ and since $(M, +)$ is a group, if we take $ay = -ax$ then, for all $x \in M$,

$$A(ax-ax) = A(0v) \supseteq A(x) \cap A(x) = A(x).$$

3.2. Proposition: If $A_{M_1} \subsetneq_i V$ and $B_{M_2} \subsetneq_i V$, then $A_{M_1} \cap B_{M_2} \subsetneq_i V$.

Proof: Since M_1 and M_2 are G-modules of V, then $M_1 \cap M_2$ is a G-module of V. By
definition 2.6, let \(A_{M_1} \cap B_{M_2} = (A, M_1) \cap (B, M_2) = (T, M_1 \cap M_2) \), where

\[
T(x) = A(x) \cap B(x) \text{ for all } x \in M_1 \cap M_2 \neq \emptyset. \text{ Then for all } x, y \in M_1 \cap M_2 \text{ and } \alpha \in F.
\]

(IFSG-m_1) \[
T(ax+by) = A(ax+by) \cap B(ax+by) = (A(x) \cap A(y)) \cap (B(x) \cap B(y)) = (A(x) \cap B(x)) \cap (A(y) \cap B(y)) = T(x) \cap T(y),
\]

(IFSG-m_2) \[
T(ax) = A(ax) \cap B(ax) \supseteq A(x) \cap B(x) = T(x).
\]

Therefore \(A_{M_1} \cap B_{M_2} = T_{M_1 \cap M_2} \subseteq V. \)

3.2. Definition: Let \((A, M_1)\) and \((B, M_2)\) be two IFSG-modules of \(V_1\) and \(V_2\) respectively, the product of IFSG-modules \((A, M_1)\) and \((B, M_2)\) is defined as \((A, M_1) \times (B, M_2) = (Q, M_1 \times M_2)\), where \(Q(x, y) = A(x) \times B(y)\) for all \((x, y) \in M_1 \times M_2.\)

3.1. Theorem: If \(A_{M_1} \subseteq V \) and \(B_{M_2} \subseteq V \), then \(A_{M_1} \times B_{M_2} \subseteq V \times V. \)

Proof: Since \(M_1 \) and \(M_2 \) are G-modules of \(V_1\) and \(V_2\) respectively, then \(M_1 \times M_2 \) is a G-module of \(V_1 \times V_2.\) By definition 3.2, let

\[
A_{M_1} \times B_{M_2} = (A, M_1) \times (B, M_2) = (Q, M_1 \times M_2), \text{ where } Q(x, y) = A(x) \times B(y) \text{ for all } (x, y) \in M_1 \times M_2.
\]

Then for all \((x_1, y_1), (x_2, y_2) \in M_1 \times M_2 \) and \((\alpha_1, \alpha_2) \in F \times F,\)

(IFSG-m_1) \[
Q \{(ax_1, by_1) + (ax_2, by_2)\} = Q (ax_1 + ax_2, by_1 + by_2) = A(ax_1 + ax_2) \times B(by_1 + by_2) \supseteq (A(x_1) \cap A(x_2)) \times (B(y_1) \cap B(y_2)) = Q(x_1, y_1) \cap Q(x_2, y_2)
\]

(IFSG-m_2) \[
Q ((\alpha_1, \alpha_2)(x_1, y_1)) = Q (\alpha_1 x_1 + \alpha_2 y_1) = A(\alpha_1 x_1 + \alpha_2 y_1) \supseteq A(x_1) \cap B(y_2) = Q(x_1, y_1).
\]

Hence \(A_{M_1} \times B_{M_2} = Q_{M_1 \times M_2} \subseteq V \times V. \)

3.3. Definition: Let \(A_{M_1} \) and \(B_{M_2} \) be two IFSG-module’s of \(V. \) If \(M_1 \cap M_2 = \{0_V\}, \) then the sum of IFSG-module’s \(A_{M_1} \) and \(B_{M_2} \) is defined as \(A_{M_1} + B_{M_2} = T_{M_1 + M_2} \) where

\[
T(ax+by) = A(x)+B(y) \text{ for all } ax+by \in M_1 + M_2.
\]

3.2. Theorem: If \(A_{M_1} \subseteq V \) and \(B_{M_2} \subseteq V \) where \(M_1 \cap M_2 = \{0_V\}, \) then \(A_{M_1} + B_{M_2} \subseteq V. \)

Proof: Since \(M_1 \) and \(M_2 \) are G-modules of \(V, \) then \(M_1 + M_2 \) is a G-modules of \(V. \) By definition 3.3, let \(A_{M_1} + B_{M_2} = (A, M_1) + (B, M_2) = (T, M_1 + M_2), \) where

\[
T(ax+by) = A(x)+B(y) \text{ for all } ax+by \in M_1 + M_2. \text{ It is obvious that since } M_1 \cap M_2 = \{0_V\}, \text{ then the sum is well defined. Then for all } ax_1 + by_1, ax_2 + by_2 \in M_1 + M_2 \text{ and } \alpha \in F,
\]

\[
T ((ax_1 + by_1) + (ax_2 + by_2)) = T((ax_1 + ax_2) + (by_1 + by_2))
\]
\[
= A(a(x_1 + x_2)) + B(b(y_1 + y_2)) \\
\supseteq (A(x_1) \cap A(x_2)) + (B(y_1) \cap B(y_2)) \\
= (A(x_1) + B(y_1)) \cap (A(x_2) + B(y_2)) \\
= T(ax_1 + by_1) \cap T(ax_2 + by_2)
\]

\[
T(\alpha(x_1 + y_1)) = T(\alpha x_1 + \alpha y_1) \\
= A(\alpha x_1) + B(\alpha y_1) \supseteq A(x_1) + B(y_1) \\
= T(x_1 + y_1)
\]

Thus, \(A_{M_1} + B_{M_2} \lesssim V\).

3.4 Definition: Let \(A_M\) be an IFSG-module of \(V\). Then,
(i) \(A_M\) is said to be trivial if \(A(x) = \{0_V\}\) for all \(x \in M\).
(ii) \(A_M\) is said to be whole if \(A(x) = V\) for all \(x \in M\).

3.3 Proposition: Let \(A_{M_1}\) and \(B_{M_2}\) be two IFSG-modules of \(V\), then
(i) If \(A_{M_1}\) and \(B_{M_2}\) are trivial IFSG-modules of \(V\), then \(A_{M_1} \cap B_{M_2}\) is a trivial IFSG-module of \(V\).
(ii) If \(A_{M_1}\) and \(B_{M_2}\) are whole IFSG-modules of \(V\), then \(A_{M_1} \cap B_{M_2}\) is a whole IFSG-module of \(V\).
(iii) If \(A_{M_1}\) is a trivial IFSG-module of \(V\) and \(B_{M_2}\) is a whole IFSG-modules of \(V\), then \(A_{M_1} \cap B_{M_2}\) is a trivial IFSG-module of \(V\).
(iv) If \(A_{M_1}\) and \(B_{M_2}\) are trivial IFSG-modules of \(V\) where \(M_1 \cap M_2 = \{0_V\}\), then \(A_{M_1} + B_{M_2}\) is a trivial IFSG-module of \(V\).
(v) If \(A_{M_1}\) and \(B_{M_2}\) are whole IFSG-modules of \(V\) where \(M_1 \cap M_2 = \{0_V\}\), then \(A_{M_1} + B_{M_2}\) is a whole IFSG-module of \(V\).
(vi) If \(A_{M_1}\) is a trivial IFSG-module of \(V\) and \(B_{M_2}\) is a whole IFSG-modules of \(V\) where \(M_1 \cap M_2 = \{0_V\}\), then \(A_{M_1} + B_{M_2}\) is a whole IFSG-module of \(V\).

Proof: The proof is easily seen by definition 2.6, definition 3.3, definition 3.4, theorem 3.1 and theorem 3.3.

3.4 Proposition: Let \(A_{M_1}\) and \(B_{M_2}\) be two IFSG-modules of \(V_1\) and \(V_2\) respectively. Then
(i) If \(A_{M_1}\) and \(B_{M_2}\) are trivial IFSG-modules of \(V_1\) and \(V_2\) respectively, then \(A_{M_1} \times B_{M_2}\) is a trivial IFSG-module of \(V_1 \times V_2\).
(ii) If \(A_{M_1}\) and \(B_{M_2}\) are whole IFSG-modules of \(V_1\) and \(V_2\) respectively, then \(A_{M_1} \times B_{M_2}\) is a whole IFSG-module of \(V_1 \times V_2\).

Proof: The proof is easily seen by definition 3.2, definition 3.4 and theorem 3.3.

4. Applications of IFSG-modules: In this section, we give the applications of soft image, soft pre image, upper \(\alpha\)-inclusion of fuzzy soft sets and linear transformation of vector spaces on vector space with respect to IFSG-modules.
4.1. Theorem: If $A_M \preceq_i V$, then $M_G = \{ x \in M / A(x) = A(0_V) \}$ is a G-module of M.

Proof: It is obvious that $0_V \in M_G$ and $\emptyset \neq M_G \subseteq M$. We need to show that $ax + by \in M_G$ and $\alpha x \in M_G$ for all $x, y \in M_G$ and $\alpha \in F$, which means that $A(ax + by) = A(0_V)$ and $A(\alpha x) = A(0_V)$ have to be satisfied. Since $x, y \in M_G$ and A_M is an IFSG-Module of V, then $A(x) = A(y) = A(0_V)$, $A(ax + by) \supseteq A(x) \cap A(y) = A(0_V)$, $A(\alpha x) \supseteq A(x) = A(0_V)$ for all $x, y \in M_G$ and $\alpha \in F$. Moreover, by Proposition 3.1, $A(ax + by)$ and $A(0_V)$ complete the proof.

4.2. Theorem: Let A_M be a fuzzy soft set over V and α be a subset of V such that $A(0_V) \supseteq \alpha$. If A_M is an IFSG-module of V, then $A_M^{\geq \alpha}$ is a G-module of V.

Proof:

Since $A(0_V) \supseteq \alpha$, then $0_V \in A_M^{\geq \alpha}$ and $\emptyset \neq A_M^{\geq \alpha} \subseteq V$. Let $x, y \in A_M^{\geq \alpha}$, then $A(x) \supseteq \alpha$ and $A(y) \supseteq \alpha$. We need to show that $x + y \in A_M^{\geq \alpha}$. Let $a, b \in F$. Since A_M is an IFSG-module of V, it follows that $A(ax + by) \supseteq A(x) \cap A(y) \supseteq \alpha \cap \alpha = \alpha$. Moreover, $A(nx) \supseteq A(x) \supseteq \alpha$, which completes the proof.

4.3. Theorem: Let A_M and T_W be fuzzy soft sets over V, where M and W are G-modules of V and Ψ be a linear isomorphism from M to W. If A_M is an IFSG-Module of V, then so is $\Psi(A_M)$.

Proof: Let $w_1, w_2 \in W$. Since Ψ is a surjective linear transformation, then there exists $m_1, m_2 \in M$ such that $\Psi(m_1) = w_1, \Psi(m_2) = w_2$. Then

$$\Psi(A_M)(aw_1 + bw_2) = \bigcup \{ A(m): m \in M, \Psi(m) = aw_1 + bw_2 \}$$

$$= \bigcup \{ A(m): m \in M, m = \Psi^{-1}(aw_1 + bw_2) \}$$

$$= \bigcup \{ A(m): m \in M, m = \Psi^{-1}(\Psi(aw_1 + bw_2)) = am_1 + bm_2 \}$$

$$= \bigcup \{ A(m_1 + bm_2): m_1 \in M, \Psi(m_1) = w_i, i = 1, 2 \}$$

$$\supseteq \bigcup \{ A(m_1): m_1 \in M, \Psi(m_1) = w_i, i = 1, 2 \}$$

$$= (\bigcup A(m_1): m_1 \in M, \Psi(m_1) = w_1) \cap (\bigcup A(m_2): m_2 \in M, \Psi(m_2) = w_2)$$

Now let $\alpha \in F$ and $w \in W$. Since Ψ is a surjective linear transformation, there exists $\bar{m} \in M$ such that $\Psi(\bar{m}) = w$. Then

$$\Psi(A_M)(\alpha w) = \bigcup \{ A(m): m \in M, \Psi(m) = \alpha w \}$$

$$= \bigcup \{ A(m): m \in M, m = \Psi^{-1}(\alpha w) \}$$

$$= \bigcup \{ A(m): m \in M, m = \Psi^{-1}(\Psi(\alpha \bar{m})) = \alpha \bar{m} \}$$

$$= \bigcup \{ A(\alpha \bar{m}): \alpha \bar{m} \in M, \Psi(\bar{m}) = w \}$$

Hence, $\Psi(A_M)$ is an IFSG module of V.

4.4. Theorem: Let \(A_M \) and \(T_W \) be fuzzy soft sets over \(V \), where \(M \) and \(W \) are \(G \)-modules of \(\gamma \) and \(\Psi \) be a linear isomorphism from \(M \) to \(W \). If \(T_W \) is an IFSG-Module of \(V \), then so is \(\Psi^{-1}(T_W) \).

Proof: Let \(m_1, m_2 \in M \). Then
\[
\Psi^{-1}(T_W)(am_1 + bm_2) = T(\Psi(am_1 + bm_2))
\]
\[
= T(\Psi(am_1) + \Psi(bm_2))
\]
\[
\supseteq T(\Psi(m_1)) \cap T(\Psi(m_2))
\]
\[
= (\Psi^{-1}(T_W))(m_1) \cap (\Psi^{-1}(T_W))(m_2)
\]

Now let \(\alpha \in F \) and \(m \in M \). Then,
\[
\Psi^{-1}(T_W)(\alpha m) = T(\Psi(\alpha m))
\]
\[
= T(\alpha \Psi(m))
\]
\[
\supseteq T(\Psi(m)) = \Psi^{-1}(T_W)(m)
\]

Hence \(\Psi^{-1}(T_W) \) is an IFSG-module of \(V \).

4.5. Theorem: Let \(V_1 \) and \(V_2 \) be two vector spaces and \((A_1, M_1) \lesssim V_1 \), \((A_2, M_2) \lesssim V_2 \).

If \(f: M_1 \rightarrow M_2 \) is a linear transformation of vector spaces, then
(i) \(f \) is surjective, then \((A_1, f^{-1}(M_2)) \lesssim V_1 \),
(ii) \((A_2, f(M_1)) \lesssim V_2 \),
(iii) \((A_1, \ker f) \lesssim V_1 \).

Proof: (i) Since \(M_1 < V_1 \), \(M_2 < V_2 \) and \(f: M_1 \rightarrow M_2 \) is a surjective linear transformation, then it is clear that \(f^{-1}(M_2) < V_1 \).

(ii) Since \(M_1 < V_1 \), \(M_2 < V_2 \) and \(f: M_1 \rightarrow M_2 \) is a vector space linear transformation, then \(f(M_1) < V_2 \).

(iii) Since \(\ker f \) is an isomorphism, the rest of the proof is clear by definition 3.1.

4.1. Corollary: Let \((A_1, M_1) \lesssim V_1 \), \((A_2, M_2) \lesssim V_2 \). If \(f: M_1 \rightarrow M_2 \) is a linear transformation, then \((A_2, \{0M_2\}) \lesssim V_2 \).

Proof: By theorem 4.5, (iii) \((A_1, \ker f) \lesssim V_1 \), then \((A_2, f(\ker f)) = (A_2, \{0M_2\}) \lesssim V_2 \).

Conclusion: Throughout this paper, we have dealt with IFSG-modules of a vector space. We have investigated their related properties with respect to soft set operations. Furthermore, we have derived some applications of IFSG-modules with respect to soft image, soft pre image, soft anti image, \(\alpha \)-inclusion of soft sets and linear transformations of vector spaces. Further study could be done for fuzzy soft sub structures of different algebras.

REFERENCES

[46] Y. Zou and Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowled-Based Syst. 21, 941-945 (2008).

- **Dr. R.NAGARAJAN** is Associate Professor and Head of Mathematics at J.J.College of Engineering and Technology, Trichy. He received the Ph.D degree from Bharathidasan University, Trichy. His main research interests are Group theory, Neutrosophic soft group, Near-ring, soft set and its applications and fuzzy decision making.