
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 3, March 2017

 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264

www.ijiset.com

A Comparison between DirectFB and X11 Graphics Library

Sung-Bong Jang1, Jeong-Mi Kim2 and Mi-Young Choi2

1Department of Industry-Academy Cooperation, Kumoh National Institute of Technology,

730701 Gyeong-Buk, South Korea,
 2Department of Computer Science & Engineering, Korea University,

136713 Seoul, South Korea

Abstract

A performance is a very important criterion when developers
implement graphics software on Linux-based mobile system.
This paper describes a comparison between X11 and DirectFB
graphics library to help them to choose most suitable one fit to
their purposes. To compare the libraries, we have conducted an
experiment where processing time for GTK widget has been
measured on Intel Xscale Processor. GTK is a multi-platform
toolkit for creating graphical user interfaces. This is suitable for
projects ranging from small on-off projects to complete
application suites because it offers a complete set of widgets. By
doing this, we would like to get a hint about which graphic
library will represent better performance for Linux based
embedded systems.

Keywords: Graphic Performance, Mobile System,

1. Introduction

In Linux-based embedded system, the graphic
performance is an important consideration when
developers implement software. Today, some smartphone
system adopts WinCE as their operating system. Some
developers may be familiar to WinCE’s user interface
library. However, WinCE is not an open source. It just
provides bunch of limited interfaces and applications
program interfaces (APIs), and they cannot explore whole
inner system structure, and it is impossible to change them
to adapt our own systems. In terms of operating system,
Linux can be a great alternative. Linux is a perfect open
source and they can explore its kernel, and develop their
own code by hand. Linux provides two kinds of graphics
libraries: X11 and DirectFB. The developers must choose
one between them by considering their performance.

X11 is a graphic library system working on Unix
operating system, which provides the basic framework for
a GUI programming: drawing and moving windows on the
screen interacting with a mouse and keyboard. It does not
require the user interface, but each client software handle
this. We can use the X11-Basic interpreter as a shell. Also
for execution of CGI-Scripts. A pseudo compiler is
shipped with the interpreter so that you can make stand-

alone binaries out of your programs. You can do any data
manipulation and you may use external functions and
libraries. At least the X11-Basic interpreter is fast and
small.

Fig. 1 X11 Graphic System

DirectFB is a thin graphics library to accelerate
hardware graphics processing and to support window
programming for developers. It is working on top of the
graphic framebuffer in the Linux. It keeps and manages its
own video graphic memory. In order to control the graphic
devices, DirectFB use the kernel interface function
provided by the framebuffer device (/dev/fb). This point is
a flaw because it always must interwork with a working
framebuffer driver. Some hardware chipsets provides
developers with a special driver at the kernel layer. If
chipset do not provide working driver, they have to use a
special framebuffer. Fig. 2 illustrates the basic working
architecture of DirectDB.

Fig. 2 DirectFB Graphic Structure

201

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 3, March 2017

 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264

www.ijiset.com

This paper describes a performance comparison
between X11 and DirectFB over Intel Xscale Processor.
We used GTK+ GUI Widgets for test data. GTK+ is a
multi-platform toolkit for creating graphical user
interfaces. GTK+ is suitable for projects ranging from
small on-off projects to complete application suites
because it offers a complete set of widgets. By doing this,
we would like to determine which graphic library will
support better performance for Linux based embedded
systems.

2. Related Works

The researches about graphics performance have been
much conducted in the past. I.G. Thakkar et al. [1]
proposed an enhanced DRAM architecture to improve
throughput and energy consumption. The approach is
based on the three-dimensional bank organization. In their
experiments, they have reached 77.7% delay reduction
when processing graphic data. However, in reality, their
experiment is based on the simulation. When it is done in
real systems, the results may be different. S.-F. Hsiao et al.
[2] presented a scheme to reduce the energy consumption
of the performance of the Open GL ES 2.0 mobile graphic
standard. In the scheme, they stopped using useless
execution based on memory partition approach. Therefore,
when accessing memory, only a small part of memory is
accessed, not whole. To evaluate the approach, they have
implemented the real system and they have attained much
improvement in processing speed and energy consumption
when compared with the conventional scheme. S. F.
Oberman [3] analyzes and discuss about an impact of the
high latency of the floating-point division in graphic
operation. Through this research, they tried to help the
designers to make decisions about implementation issues
of the graphic hardware. J. Cohen et al. [4] describes the
effect and performance of a parallel execution based on
graphic processor unit (GPU) when processing graphics
data. The GPU used in their discussion is a CUDA
processor, which has been developed Nividia. The
processor supports multi-threaded and multi-processors.
Each processor in CUDA allows the number of 1,024
threads to be forked and executed at the same time. Thread
handling and scheduling can be done via hardware, and
thus it minimize the processing overhead. D. W. Wong et
al. [5] discusses about a simulation scheme to help chip
designers to efficiently predict the performance before
releasing the graphic chip. Z. Yang et al. [6] discusses
about a approach to accelerate the graphic processing
based on multi-chip solution. L. Ilya et al. [7] describes a
case study about the approach based on GPU to improve
the image processing performance.

3. Experimental Setup

For evaluating X11 and DirectDB, GTK+ widgets have
been as testing data. GTK+ widgets is a graphic library
that can be worked on X11 and DirectFB, which consists
of three basic libraries: Glib, Pango, and ATK. Glib refers
to the basis library that provides low-level interfaces for
operating system functionalities such as threads, memory
management, and file system management. Pango provides
basic simple graphic functionalities such as text rendering,
font management, and layout. The ATKs are interface
libraries through which other softwares can access to test
widgets easily. The basic procedures to create a widget are
as follows.
• Create a widget by calling the function “new()”. This

function returns a pointer of a GTK data type.

• Set the appropriate signal handlers to be used

• Assign the initial values to the widget’s attributes

• Combine the created one into a container class by
utilizing gtk_container_add() or gtk_box_pack_create
function

• Display the created one by using gtk_widget_show()
function

The widgets that are used in the experiments are
illustrated in Fig. 3.

Fig. 3 Widgets used in performance evaluation

To evaluate each graphic library using the basic widgets,
we have used the special purpose software, grkperf(). This
is a useful software designed to test GTK widgets. By
using this tool, we can create common testing environment
to execute predefined widgets and define the speed
between device and platform. This tool can be helpful to
solve the following problems:
• Comparison of the processing time for my hardware or

software platform

• Comparison of the processing performance of GTK
with different themes

202

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 3, March 2017

 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264

www.ijiset.com

• Detecting any remarkable slow widget when using my
GTK library.

• Getting information about performance enhancement
when GTK is used together with X-server

• Determining whether GTK+ can be used efficiently
for different embedded device.

The resulting processing time can be seen at the command
prompt at the Linux. In the test, we run the widgets each
100 times and some of widget operations are follows.

• GtkComboBox (on_idle_gtkcombobox_test)

This test repeated for 10 entries from "Selection 1" to
"Selection 10". This test opens and closes
GtkComboBox 10 times while selecting next entry.

• GtkComboBoxEntry (on_idle_gtkcomboboxentry_test)

This test repeated for 10 entries "Selection
1"..."Selection 10" of combo box. This test opens and
closes GtkComboBoxEntry 10 times while selecting
next entry.

• GtkSpinButton (on_idle_gtkspinbutton_test)

This function is used to test spin button press. In the
test, maximum count number is set to be 1000, and
thus when the counter reaches 1000, it is set to be 0.

• GtkProgressBar (on_idle_gtkprogressbar_test)

The purpose of this function is to evaluate the
performance of the progress bar on both platform. In
the test, the bar increases by 1%. Whenever bar gets
full, its value is set back to 0.

• GtkToggleButton (on_idle_gtktogglebutton_test)

This is used to test toggle key on and off.

• GtkCheckButton (on_idle_gtkcheckbutton_test)

This is used to test check button.

• GtkRadioButton

This is used to simulate the on and off of the radio
button.

• GtkTextView

Using this function, we can test adding and scrolling
the simple text input.

• GtkDrawingArea

Using this function, we are able to test the drawing
actions that include line drawing, circle drawing, text
input, and pixel buffer operation.

3. Results and Analysis

The testing screen is illustrated in Fig. 4. Fig. 4-(a)
represents an initial window for setting various options
before starting the experiment. In this window, the user can
set the number of test rounds and the widget that they want
to test. If the users want to test all widgets, they select “test
all” option from lists. Fig. 4-(b) shows the testing results
that shows execution time for each widget. In this way, we
have collected running time of each widget and total
execution time for X11 and DirectFB. We repeated the test
for each widget ten times.

(a) User Interfaces for Testing Widgets in GtkPerf()

(b) Widgets Execution Screen for Processing Time Measurement
Fig. 4 an Execution Screen of the Test

Fig. 5 and Fig. 6 shows the experimental results. Fig.

5 represents the results with double buffering in DirectFB,
and Fig. 6 shows those without double buffering in
DirectFB. The line with red-color represents average time
of second over DFB, and blue-color line represents the
processing time of each widget over X11. From the results,
we can see that there is a great difference in performance
when double buffering is used in DirectFB. However, there

203

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 3, March 2017

 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264

www.ijiset.com

is a little difference when DirectFB does not use a double
buffering. In this project, we implemented software double
buffering only in the DFB and this is used in conjunction
with DMA in intel processor. But in case of X11, we did
not use double buffering in video frame processing. When
the double buffering is disabled in DirectDB, the
performance result is similar to that in X11 as shown in Fig.
6. We see that X11 shows better performance always for
both case.

Fig. 5 Experimental Results with Double Buffering in DFB

Fig. 6 Experimental Results without Double Buffering in DFB

In this work, we analyzed the causes of the

performance difference from the following two aspects:

• Graphic Software Structure

Basically, X11 library has a network graphic software
architecture. This means that if we want to render graphic
data to the display, the data should go through network
layer. Furthermore, the rendering operation is done based
on client-server architecture. This architecture is one of
causes which degrade the performance of complex widget
processing or three-dimensional graphic that require faster
graphic speed. In this project, we predicted that DFB
would have faster widgets running time, but the result was
opposite. From the results, we concluded that network X11
graphic architecture have made small impact on the
performance. If we would have used longer test rounds
value or test 3D graphic data, it would make greater impact
on the GTK performance.

• Double Buffering

Double buffering is a well-known scheme that is used
to get rid of useless artifacts during rendering. The
implementation can be done both in hardware and software.
In computer graphics, LCD monitors display the visible
image on the screen at seventy times per second. This
makes it difficult to apply changes to the screen data
without the screen rendering the results before the
rendering operation finishes. Therefore, useless video
noises like flickering and tearing appear in the screen. To
remove the noises, software double buffering utilize a
system RAM where all rendering data are written into. The
process is as follows. First, when a rendering operation is
finished, the whole data, or a part of the data, is replicated
into the system RAM. Next, whenever they render the
video, replication is done in advance before the screen’s
beam reaches. In the result, the video noises can be
avoided if replication is faster than screen beam. The
advantage is that the approach causes a higher overhead
than in hardware. The hardware implementation for
removing noises is called as page flipping. In the scheme,
two kind of graphic pages are used. When rendering video,
at one instant, only one page of video is being active for
display, and at the same time, another background page is
being rendered. When the rendering has been finished, the
roles of each video data are switched, so that the
previously displayed vodeo data is now being updated, and
the previously updated video data is now being displayed.
By using the scheme, noises will not appear as long as the
video data are appropriately switched over during the
screen’s vertical blank period when there is no data to be
rendered. However, the required amount of VRAM size is
twice of the single video data scheme.

From the experiment, double buffering is the main
cause of performance degradation in DFB which is two
times slower than in X11. Therefore, we concluded that

204

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 3, March 2017

 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264

www.ijiset.com

double buffering is more major factor than graphic
software architecture which affects the GTK perform
performance because the result shows that X11 is two
times faster than DFB. Table 1 shows the qualitative
analysis of the results of GTK widgets running.

Table 1: The factors affecting the performance

Factors DirectFB X11

Graphic System
Architecture No Yes

Double Buffering Yes No

From this table, we can see that a double buffering is a
major factor and graphic system architecture is a minor
factor.

4. Conclusions

The contribution of this paper is to get some hints about
which graphic library has a better performance between
X11 and DirectFB. The future work is to implement the
double buffering in X11, and conduct the comparison with
DirectFB. The next work is to compare and evaluate two
libraries on mobile processor such as advanced risc
machine (ARM) rather than Intel XScale processor.

Acknowledgments

This paper was supported by Research Fund, Kumoh
National Institute of Technology.

References
[1] I. G. Thakkar, and S. Pasricha, “A novel 3D graphics DRAM

architecture for high-performance and low-energy memory
accesses,” in Proceedings of the 2015 33rd IEEE
International Conference on Computer Design (ICCD),”
2015, pp. 467 – 470.

[2] S.-F. Hsiao, S.-Y. Li, and K.-H. Tsao, “Low-power and high-
performance design of OpenGL ES 2.0 graphics processing
unit for mobile applications,” in proceedings of the 2015
IEEE International Conference on Digital Signal Processing
(DSP), 2015, pp. 110 -114.

 [3] S. F. Oberman, and M. J. Flynn, “Design issues in division
and other floating-point operations,” IEEE Transactions on
Computers”, 1997, vol.46, no.2, pp. 154 – 161.

[4] J. Cohen, and M. Garland,”Novel Architectures: Solving
Computational Problems with GPU Computing,” Computing
in Science & Engineering, 2009, vol.11, no.5, pp.58 – 63.

[5] D. W. Wong, and M. Aleksic, “Performance prediction on
graphics hardware using software simulation,” in
Proceedings of the Canadian Conference on Electrical and
Computer Engineering 2001, vol. 2, pp.1235 – 1240.

[6] Z. Yang, M. Rahman, and S. Mourad, “Signal integrity and
design consideration of an MCM for video graphic
acceleration,” IEEE Transactions on Advanced Packaging,
2001, vol.24, no.3, pp.309 – 316.

[7] L. Ilya, S. S. Ivanovich, K. Y. Viacheslavovich, D. I.
Alekseevna, P. V. Vladimirovich, S. L. Valerievna, “ On the
possibility of image processing acceleration with the graphic
processing unit,” in Proceedings of the 2016 Second
International Young Scientists Forum on Applied Physics
and Engineering (YSF)”, 2016, pp. 214 – 217.

205

http://www.ijiset.com/

