A Note on the Hierarchical Transmuted Log–Logistic Model

Anna Malinova1, Anton Iliev1,2 and Nikolay Kyurkchiev1,2

1 Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 24, Tzar Asen Str., Plovdiv 4000, Bulgaria
2 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 8, Sofia 1113, Bulgaria

Abstract

The Transmuted Log–Logistic distribution is a flexible and simple model with applications to reliability analysis. We prove upper and lower estimates for the Hausdorff approximation of the shifted Heaviside function \(\tilde{h}_0(t) \) by a class of Transmuted Log–Logistic cumulative distribution function – (TLL–CDF). Numerical examples, illustrating our results are given.

Keywords: Transmuted Log–Logistic cumulative distribution function – (TLL–CDF), shifted Heaviside function, Hausdorff distance, upper and lower bounds.

1. Introduction

The cumulative distribution function of the (TTL) distribution is given by [1]–[2]:

\[
F(t) = \frac{e^{\mu t^\beta}}{(1 + e^{\mu t^\beta})^2} (1 + e^{\mu t^\beta} + \lambda)
\]

where \(\beta > 0, \mu \in \mathbb{R} \) and \(-1 \leq \lambda \leq 1 \).

Since the distribution was proposed to model experiments in reliability analysis. In this paper we prove upper and lower estimates for the Hausdorff approximation of the shifted Heaviside function \(\tilde{h}_0(t) \) by a class of Transmuted Log–Logistic cumulative distribution function – (TLL–CDF).

2. Preliminaries

Definition 1. The (basic) step function is:

\[
\tilde{h}_0(t) = \begin{cases}
0, & \text{if } t < t_0, \\
[0,1], & \text{if } t = t_0, \\
1, & \text{if } t > t_0,
\end{cases}
\]

usually known as shifted Heaviside function.

Definition 2. [3], [4] The Hausdorff distance (the H–distance) [3] \(\rho(f,g) \) between two interval functions \(f, g \) on \(\Omega \subseteq \mathbb{R} \), is the distance between their completed graphs \(F(f) \) and \(F(g) \) considered as closed subsets of \(\Omega \times \mathbb{R} \).

More precisely,

\[
\rho(f,g) = \max \left\{ \sup_{A \in F(f)} \inf_{B \in F(g)} \| A - B \|, \sup_{B \in F(g)} \inf_{A \in F(f)} \| A - B \| \right\},
\]

wherein \(\| . \| \) is any norm in \(\mathbb{R}^2 \), e. g. the maximum norm \(\| (t,x) \| = \max \{|t|,|x|\} \); hence the distance between the points \(A = (t_A,x_A), B = (t_B,x_B) \) in \(\mathbb{R}^2 \) is \(\| A - B \| = \max(|t_A - t_B|, |x_A - x_B|) \).

Let us point out that the Hausdorff distance is a natural measuring criteria for the approximation of bounded discontinuous functions [5].

3. Main Results

Let us consider the following 3-parametric sigmoid function
\[F^*(t) = \frac{e^{\mu t^\beta}}{(1 + e^{\mu t^\beta})^2} (1 + e^{\mu t^\beta} + \lambda) \]

(4)

Proof. We define the functions

\[H(d) = F^*(t_0 + d) - 1 + d \]

(10)

\[G(d) = a + bd. \]

(11)

From Taylor expansion

\[H(d) - G(d) = O(d^2) \]

we see that the function \(G(d) \) approximates \(H(d) \) with \(d \to 0 \) as \(O(d^2) \) (cf. Fig. 1).

In addition \(G'(d) > 0 \) and for \(\frac{2b}{-a} > e^2 \)

\[\left. G(d) < 0; \ G(d) \right. > 0. \]

This completes the proof of the inequalities (14).

The generated sigmoidal functions \(F^*(t) \) for

a) \(\beta = 10; \mu = 5; \lambda = 0.8; \)

b) \(\beta = 20; \mu = 9; \lambda = 0.9; \)

and c) \(\beta = 50; \mu = 15; \lambda = 0.95; \) are visualized on Fig. 2–Fig. 4.

From the Fig. 2–Fig. 4 it can be seen that the "supersaturation" is fast.

The following theorem gives upper and lower bounds for \(d \):

Theorem 1. Let

\[a = - \left(1 - \frac{e^{\mu t_0^\beta}}{(1 + e^{\mu t_0^\beta})^2} (1 + e^{\mu t_0^\beta} + \lambda) \right) \]

(7)

\[b = 1 + e^{\mu} \left(\frac{e^{\mu t_0^{2\beta - 1} \lambda}}{(1 + e^{\mu t_0^\beta})^2} + \frac{2e^{\mu t_0^{2\beta - 1} \lambda}}{(1 + e^{\mu t_0^\beta})^3} + \frac{t_0^{\beta - 1} \beta}{(1 + e^{\mu t_0^\beta})^2} \right) (1 + e^{\mu t_0^\beta} + \lambda) \].

(8)

The \(H \)-distance \(d \) between the function \(\tilde{h}_0 \) and the sigmoidal function \(F^* \) can be expressed in terms of the parameters for \(\frac{2b}{-a} > e^2 \) as follows:

\[d_i = \frac{1}{2b} < d < \frac{\ln \left(\frac{2b}{-a} \right)}{-a} = d_r. \]

(9)

![Fig. 1 The functions H and G](image-url)
Fig. 2 The function $F^*(t)$ for $\beta = 10; \mu = 5; \lambda = 0.8$;
$t_0 = 0.563681$; H-distance $d = 0.108415$;
$d_l = 0.0418; d_r = 0.132709$.

Fig. 3 The function $F^*(t)$ for $\beta = 20; \mu = 9; \lambda = 0.9$;
$t_0 = 0.612355$; H-distance $d = 0.0665403$;
$d_l = 0.0241137; d_r = 0.0898229$.

Fig. 4 The function $F^*(t)$ for $\beta = 50; \mu = 15; \lambda = 0.95$;
$t_0 = 0.728395$; H-distance $d = 0.0362169$;
$d_l = 0.0119635; d_r = 0.0529493$.

4. Conclusions

In this paper we prove upper and lower estimates for the Hausdorff approximation of the shifted Heaviside function $\hat{h}_{\beta}(t)$ by a class of Transmuted Log–Logistic cumulative distribution function – (TLL–CDF).

Numerical examples, illustrating our results are given.

We propose a software module (intellectual property) within the programming environment CAS Mathematica for the analysis of the considered family of (TLL–CDF) functions.

For other results, see [6]–[20].

Acknowledgments

This work has been supported by the project FP17-FMI-008 of Department for Scientific Research, Paisii Hilendarski University of Plovdiv.
References

[16] N. Kyurkchiev. A new transmuted cumulative distribution function based on Verhulst logistic function with application in population dynamics. Biomath Communications 4, No 1 (2017); (15 pp.)

