
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 2, April 2014.

www.ijiset.com

ISSN 2348 - 7968

A LIGHTWEIGHT SECURE PROCESS AUTHENTICATION

MECHANISM USING ENCRYPTION TECHNIQUE

R. Bhavani

Department of Computer Science and Engineering

Rajalakshmi Engineering College

Chennai, India.

Abstract — This paper highlights the need for process

authentication for user-level applications in modern operating

system. In most systems, the process name and installation

path is used for process authentication purpose which is not

reliable. We propose a lightweight secure credential generation

mechanism for process authentication in which user-level

applications need to prove their identity to the kernel at

runtime and it is stored in the encrypted space of the disk. The

process identity is encrypted and stored in credential registrar

when application is run for first time. Subsequent run of the

application generates new credential and is verified with the

stored value in credential registrar for authenticity. Our

prototype evaluation results in low overhead and proves that it

is feasible approach for process authentication in operating

system.

Keywords- Operating system; process authentication;

credential registrar; Authentication framework

I. INTRODUCTION

Operating system normally provides a certain level of
security to the applications. Process identifiers are mainly
process id and process names. We assume that kernel does
not contain any malicious code. Many types of
authenticating an application are being provided by MAC in
which the administrator manages the access control. It was
used mainly in the system where confidentiality was
considered as the main constraint. Some of the existing
MAC systems are SELinux, grsecurity and AppArmor
which overcomes the drawbacks of traditional MAC system.
Commonly MAC uses the installation path for which the
access rights are given which is weaker and gives way for
the malware to invade. Public key cryptography can also be
applied which uses keys to verify. These traditional methods
can be overcome by creating an application framework
which verifies the application before the system call request
ends. Session II describes about the literature survey.

II. RELATED WORKS

 G. Xu, C. Borcea, and L. Iftode [1] proposed about
Satem, a Service-aware trusted execution monitor ensuring
the trustworthiness of the executable code across client-
service transactions. Satem architecture has an execution

monitor in specified with Trusted Platform Module (TPM).
For a transaction to be successful the user demanded service
must be proven before transaction starts. The existing
method lags in measuring and protecting the integrity of the
service code at the runtime. The main drawback of this
method results in false positives. BIND emerges to solve this
problem due to the high complexity the code is applied to a
certain part of the code instead of the entire part of service
code. Before the transaction starts the client requests the
trusted execution monitor. Then it creates a commitment, the
commitment is ensured with the third-party trusted authority.
The client verifies the commitment with the third party and
make sure that it is not being compromised. The operating
system kernel of the service provider is registered with the
Trusted Platform Module (TPM). The main motivation of
this work is to prevent from 3 real-life threats namely
Service Spoofing, Service Tampering, and Post-Request
Attack.

 H.M.J. Almohri, D. Yao and D. Kafura [2] proposed that
process identification at runtime is authenticated to the
kernel using the secret key. This secret key is registered with
the kernel at the time of installation, which is authenticated
in unique way. Existing MAC system is combined with the
system call monitoring. There are two main concepts namely
application identification and application monitoring.
Process names are dynamic and can be changed by the user
or an attacker at specific time. The secret key is created for
the legitimate application, tokens are created for secure
authentication of the application. Monitoring of the
application is done to prevent the unauthenticated application
to access the resources. The tokens are bind with the
appropriate application with their access rights. The main
advantage of this paper is there is no performance penalty.

P. Loscocco and S. Smalley [3] proposed that DAC
(Discretionary Access Control) is mainly based on user
identity and ownership. It ignores security relevant
information such as user role, trustworthiness of the program
and sensitivity, integrity of data. DAC does not provide any
protection against the malicious software. DAC mechanism
is used by malicious or flawed application can easily cause
failure in system security. DAC is inadequate for strong
security. DAC supports trusted administrators and
completely untrusted ordinary users. MAC is added to the

62

62

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 2, April 2014.

www.ijiset.com

ISSN 2348 - 7968
existing vulnerability, it is based on labels. The

limitations of traditional MAC is addressed by the National
Security Agency (NSA), with the help of Secure Computing
Corporation (SCC) developed two mach based prototypes,
DTMach and DTOS, they developed strong, flexible security
architecture. NSA created Security- Enhanced Linux or
SELinux integrating this enhanced architecture into the
existing Linux operating system. SELinux supports the
following restrict access to the classified data, minimizes the
damaged caused by the virus and malicious code.

Z.M. Hong Chen, Ninghui Li [4] proposed that VulSAN
(Vulnerable Surface ANalyser) is used for measurement of
protection quality for analyzing and comparing protection of
MAC system in Linux, the tool results in the creation of the
graph. VulSAN uses various tools such as Attack Path
Analyzer, Fact Collector, Host Attack Graph Generator. Fact
collector collects security policies, system state details and
the details about the running processes. Host attack uses the
scenario and generates the host attack graph. SELinux policy
defines processes of which domain can access objects of
different operations. AppArmor is an access control system
which describes about the access permission it maintains a
profile list. The profile list consists of the file access details.
If there is no profile it says that it is not confined by default.
The file permission is defined in the profile list.

H. Zang, W. Banick, D. Yao, and N. Ramakishnan [5]
proposed a framework to analyze user actions and the
network related events, this helps to identify the anomalous
events caused by the malicious program. To test the user
based options CR-Miner is created to test the security,
accuracy and also the efficiency of the user activities. The
main goal of the CR-Miner is to identify the dependencies in
the network traffic. A semantic based approach is created to
detect the anomaly traffic on hosts. They observe the
dependencies between the user activities. First the CR-Miner
framework analyzes the model and a tree based structure is
maintained. The false positive rate of the CR-Miner is also
calculated. To provide malware protection to the existing
system we propose a light weight cryptographic mechanism
to provide message authentication. Parasitic malware uses
same process ID as that of the host program. The unwanted
traffic is noted as these can leak the user related information.

K. Xu, H. Xiong, D. Stefan, C. Wu and D. Yao [6]
proposed that their main goal was to improve trustworthiness
of the host resources. System data integrity approach is
created at the system level. Two applications are created
such as keystroke integrity verification and malicious traffic
detection. Data-provenance integrity states that source from
which a piece of data is generated can be verified. The
outbound network packets states that the packets are
generated by user-level application and it cannot be injected
in the middle of the network stack, they can be prevented by
providing a firewall at the transport layer without being
bypassed by malware. Keystrokes are used in external
keyboard devices in client-server architecture. It includes
authentication of two important data types user inputs and
network flow. Signatures scheme is involved in the malware
detection, the signer and verifier are kernel module.

III. SYSTEM ARCHITECTURE

The system architecture has three major functions
described in it such as Trusted key registrar, The applications
are classified as the legitimate and the trusted application to
identify the intrusion of the malware in the application and to
secure the use of system resources. Authenticator and
Service access monitor. The architecture is explained below.

Fig. 1 Process Authentication

A. Trusted Key registrar

 Trusted key registrar is a kernel helper responsible for
installing the key for the application and registering the
application with the kernel. The application interacts with the
trusted key registrar to receive a secret key. The trusted key
registrar stores the same key and registers it for
corresponding application with a secure storage to be used
for the authentication of the process at runtime.

B. Authenticator

 Authenticator is responsible for authenticating a process
when it loads first. The authenticator generates identity
tokens based on a token generation protocol. Credentials are
referred to cryptographic keys and passwords. Credentials
are the control access to the information and other resources.
These credentials are being verified by the authenticator.

C. Service Access Monitor(SAM)

Service access monitor is responsible for verifying the

process authentication at runtime and enforces application-

level access rights. Since the tokens are maintained by the

authenticator, SAM realizes its task by coordinating with

the authenticator through a shared data structure. SAM

enforces application level access rights based on user

specified application policy. SAM maintains two list namely

credential list and status list. All the valid credentials are

maintained in the credential list.

63

63

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 2, April 2014.

www.ijiset.com

ISSN 2348 - 7968

D. Credentials Generation

 Secret credentials are created for the trusted

applications. Application Authentication can be done at any

time either at the installation or at the run time. Generated

copies of the credentials are maintained by the application

and the registrar. On the removal of the credential the

application is no longer valid. Random numbers can be

generated to make the guess harder; the major drawback of

the credential storage is maintaining the credential list in

secret. The credentials are bind with the executable file from

which the authenticator authorizes or verifies the

application. The encrypted application is accessed only

using the given passphrase at the time of encryption.

E. LUKS Encryption

Linux Unified Key Setup is used for encrypting the

required partition which provides high level of security with

the low level of attacks and supports multiple keys. LUKS

includes the Cryptsetup. The Encrypted part is made

available with the Passphrase which protects the illegal use

of the resources available.

 IV. Discussion
 There are three major operations in authenticating a
process- Credential Generation, Authenticating Process and
Runtime Monitoring. The process is accredited with
credentials and the credential list is accessed by the kernel.
The process authentication must satisfy the following
unforgeability, Anti-replay, Uniqueness etc. The credential is
registered for the process which is considered to be the
legitimate application. The credential is maintained secret,
the secrecy of the credential is done by the code capsule. The
code capsule is a piece of code which is not read or write
accessible to user in any way while it is accessible only to
the kernel, this is being attached with the executable code.
The major role of the code capsule is to combine the
credential with the corresponding executable file. The
process is authenticated using AES 192 bit. AES 192 bit has
12 rounds of encryption. It resists quantum computer attack.
There are 4 major rounds in general they are Sub bytes, Shift
rows, Mix columns, Add Round key . AES 192 bit
encryption provides a high level of security, it can be
efficiently implemented in hardware and also in software and
also has a less memory utilization.

 The credential list maintains the name of the application

and their corresponding credential. There exist a

authenticator module which maintains the status list S and

the credential list with the above mentioned features. The

authenticator requests the registrar with the name of the

application which in turn replies the request with the

credential saved in the list L. The credential list is

maintained with the encrypted value for the process ID.

The authentication protocol is between the authenticator
and a process at the time of the process creation. The
procedure at the time of creation is explained as follows.

1. The process p sends the authentication request
to the application to claim that it is the exact
process.

2. The authenticator A request the registrar for the
process with p.name. It returns the value if it
has for the corresponding process p if there is
no match found it returns null.

3. When there is no credential saved it alerts a
sign for suspicious application.

4. The authenticator A creates a random once and
sends it to the process p.

5. The process p secret credential is obtained from
the code capsule.

6. If the authenticator time t exceeds the threshold
value the request for the authentication of the
process is terminated is indicated to A.

IV. IMPLEMENTATION AND RESULTS

We have implemented credential registrar in c in Linux

operating system. The process name, PID & file statistics is

encrypted with AES 256 bit key and the generated cipher

text is saved in the credential registrar. Luks encryption

method is performed to avoid illegal access of the resources.

V. CONCLUSION

Our work on credential generation mechanism for

process authentication in Linux operating system has been

implemented successfully. Only legitimate processes are

allowed to access the system resources and illegal access is

notified to the administrator through mail. In future, this

mechanism will be incorporated in android based handsets.

 REFERENCES

[1] G. Xu, C. Borcea, and L. Iftode, “Satem: Trusted service code
execution across transactions,” in Proceedings of 25th IEEE
Symposium on Reliable Distributed Systems(SRDS).
Washington, DC, USA: IEEE computer society, 2006 ,pp.
452-457.

[2] H.M.J. Almohri, D. Yao, and D. Kafura, “Identifying native

applications with high assurance,” in Proceedings of ACM

Conference on Data and Application Security and Privacy

(CODASPY), February 2012.

[3] P. Loscocco and S.Smalley, “Integrating flexible support for

security policies into the Linux operating system,” in

Proceedings of the 2001 USENIX Annual Technical

Conference. Berkeley, CA: USENIX Association, 2001.

[4] Z.M. Hong Chen, Ninghui Li, “Analyzing and comparing the
protection quality of security enhanced operating system,” in

proceedings of the 16th Annual Network & Distributed
System Security.

[5] H. Zang, W.Banick, D.Yao, and N.Ramakrishnan, “User

intention-based traffic dependence analysis for anomaly

detection,” in Proceedings of Workshop on Semantics and

Security (WSCS), May 2001.

[6] K. Xu, H. Xiong,D. Stefan, C. Wu, and D. Yao, “Data
provenance verification for secure hosts,” IEEE Transaction
on Dependable and Secure Computing (TDSC), vol. 9 (6), pp.
838 – 851.

64

64

