

A Review Article on Atherosclerosis

Yashika Bhardwaj¹, *Umesh Kumar², Meenakshi Mishra², Akash Kumar¹ And Pankaj Kishor Mishra³

¹Assistant Professor, Department of Paramedical Sciences, Subharti Medical College, Swami Vivekanand Subharti University, Meerut.

² Associate Professor, Department of Paramedical Sciences, Subharti Medical College, Swami Vivekanand Subharti University, Meerut

³Professor, Department of Paramedical Sciences, Subharti Medical College, Swami Vivekanand Subharti University, Meerut

***Correspondence author:**

Dr. Umesh Kumar, Associate Professor, Department of Paramedical Sciences, Subharti Medical College Swami Vivekanand Subharti University, Meerut,

Email: umesh.biochem@gmail.com, **Mobile no.:** 7409186990

Abstract

The reduction of infectious diseases that affect children and young adults is largely responsible for rise in life expectancy. Our population is ageing, and chronic infectious diseases, particularly those of the cardiovascular system, are becoming increasingly prevalent. Arteriosclerosis causes an artery to stiffen. The three recognised lesions are atherosclerosis, Monckeberg medial calcific sclerosis, and arteriolosclerosis, and each has a unique origin, clinical course, and pathological effects. The most common cause of death is arteriosclerosis. Many studies have been done to identify and measure the risk factors for this disease. In essence, many of these studies have advanced our knowledge of the causes of arteriosclerosis, including high-cholesterol diets, hypertension, smoking, and inactivity. In addition to genetic dyslipidemia, hypertension, and diabetes, environmental risk factors like diet, smoking, stress, and a sedentary lifestyle can affect the development of atherosclerosis. Protective factors associated with parasite infestations and environmental disorders may also have an impact. Peripheral artery disease (PAD) is now more prevalent throughout the world. Limited pain-free walking distance (intermittent claudication) or tissue ulceration are two signs that PAD should be treated. Endovascular therapy has replaced open surgical surgery as the preferred type of treatment in many arterial regions because it is less intrusive. There is still no mention of treating the common femoral artery (CFA) in this. It is widely established that the presence of obstructive coronary lesions like angina or myocardial infarction is clinically correlated with the blood level of low-density lipoprotein (LDL) cholesterol.

Key Words: Peripheral artery disease, Angina, Atherosclerosis, Ischemia.

Introduction

The most prevalent causes of death in the industrialised world are coronary heart disease and cerebrovascular illness, both of which are primarily brought on by arteriosclerosis [1]. An artery hardens due to arteriosclerosis. Atherosclerosis, Monckeberg medial calcific sclerosis, and arteriolosclerosis are the three known lesions, and they differ in terms of pathogenesis, clinical outcomes, and pathological repercussions. [2-4].

- i. **Atherosclerosis:** The intimal lesions known as atheromas, atheromatous plaques, or fibrofatty plaques, which protrude into and get stuck in arterial lumens and weaken the underlying media, are the most common and significant pattern. They might trigger significant complications. The atheroma is the distinctive lesion in atherosclerosis. With varying volumes and types of lipids, connective tissues, inflammatory cells, and a range of extracellular components, such as calcium deposits, matrix proteins, and enzymes, atherosclerotic lesions increase the artery intima. [5-7]. Since atherosclerosis is the leading cause of death in industrialised nations, extensive research has been done on this lesion, leading to significant advancements in our knowledge of its pathogenesis, risk factors, natural history, treatment, and prevention.

Although "athero" literally means "gigel like," sclerosis denotes hardening. As a result, the literal definition of atherosclerosis is the thick, chunky liquid that hardens the arteries. Atheromatous arteriomalacia or atheromatous arteriopathy are possible alternative names for some of the lesions. But because they have developed into semantically distinct terms, historically these have been referred to as sclerotic lesions rather than hard lesions. Additionally, a term's definition frequently deviates semantically from its Greek origin. Even though the word "hippocampus" is Latin for "sea horse," we recognise that this historical name should not be taken literally. Additionally, other pathologies such as multiple sclerosis and hippocampal sclerosis, in which hardening is not the distinguishing change, are frequently referred to as having sclerosis. This makes it easy to recognise atherosclerosis as a respectable subtype of arteriosclerosis. [8].

- ii. **Monckeberg medial calcific sclerosis:** As the name suggests, Monckeberg medial calcific sclerosis is a calcification condition that affects the media of large and medium-sized arteries. According to reports, people under 50 are infrequently diagnosed with it. Monckeberg calcific lesions, according to our German translators, exclusively affect the tunica media of arteries, not the arterial lumen. [9]. The term Monckeberg medial calcific sclerosis (MMCS) is probably only partially accurate, because there are different

types of vascular calcification. [10,11]. Activation and migration of myofibroblasts from the adventitia as well as differentiation of smooth muscle cells are two possible pathways that may be involved in MMCS. Age, diabetes mellitus, and chronic kidney disease (CKD) are the specific clinical conditions connected to MMCS. MMCS is uncommon before the age of 50 in general, but it may have started sooner in CKD even in the absence of atherosclerotic plaques. A kind of vascular calcification (VC) known as Monckeberg medial calcific sclerosis has been linked to higher rates of cardiovascular morbidity and mortality. Both types of VC can present intraoperative challenges during vascular surgery, even though MMCS does not have an obstructive aspect, in contrast to advanced atherosclerotic lesions. [12].

iii. Arteriolosclerosis: It is a lesion of arterioles, which are small arteries having one or two layers of smooth muscle cells. Arteriolosclerosis affects arterioles all over the body and is frequently linked to both high blood pressure and diabetes. The hyperplastic type and the hyaline type of arteriolosclerosis are two histologically distinct yet unquestionably linked subtypes. [13]. The subtype "fibromuscular intimal thickening" would also include fibromuscular hyperplasia in arteries, which is seen in transplant vasculopathy, restenosis lesions after balloon angioplasty or stenting, and nonspecific intimal thickening that develops in temporal arteries with ageing. Hyalinosis primarily affects arterioles, however arteries can also experience the same alterations. As a result, calling these lesions simply "intimal hyalinosis" would encompass similar abnormalities in both arteries and arterioles. [14,15].

These lesions commonly have three things in common. Both the stiffening of arterial arteries and the thickening of the arterial wall were formerly thought to be "degenerative" disorders. [16].

Epidemiology of Arteriosclerosis:

Cardiovascular diseases (CVD) are the leading cause of mortality in the Western population [17]. Atherosclerosis is considered a progressive inflammatory systemic disease affecting mainly the wall of large and medium arteries, such as the aorta, carotid, and coronary arteries [18, 19], at sites prone to low, turbulent, or oscillatory shear stress, like branches, curvatures, or bifurcations [20]. Although clinically relevant lesions become evident in middle-aged adults, it has been demonstrated that fat accumulation (known as fatty streaks) begins in early childhood [21]. The latency period is long, and clinical manifestations become evident several years later [22].

Cardiovascular (CV) risk factors such as hypercholesterolemia, hyperglycaemia, obesity, hypertension, smoking, and aging promote vascular inflammation and endothelial activation [23-25]. Controlling these factors reduces the risk of acute vascular complications and death from CVD [17]. In accordance with the latest report of the World Health Organization (WHO), deaths from noncommunicable diseases account for almost 74% and they are mainly attributed to CVD [26]. The incidence of target organ damage associated to CVD increases with age, and gender studies show global higher incidence in men for stroke and coronary artery disease (CAD) [26]. The global mortality rate for CVD has significantly decreased in the last years; however, stroke and CAD remain the leading causes of mortality for CVD in adults [26].

Oxidation of low-density lipoprotein (LDL) cholesterol is crucial in the development of atherosclerosis, and low LDL levels reduce the risk of major events in patients with CVD [6]. Despite that macrophages have low affinity for nonoxidized LDL, reducing LDL levels prevents oxidation, as recognized by European and American cardiac societies in their guidelines [27]. Besides the importance of this process, oxidation of LDL is not the sole initiator of inflammation, as the imbalance between oxidants and antioxidants is also important for the process of atherogenesis.

Causes of Arteriosclerosis

In the World, arteriosclerosis is the leading cause of death. The risk factors for this illness have been the subject of much research to identify and quantify them. In essence, a lot of these studies have helped us understand the role that high-cholesterol diets, hypertension, smoking, and inactivity play in the aetiology of arteriosclerosis [28, 29].

Diabetes and Smoking

Compared to non-diabetics, people with diabetes experience arteriosclerosis obliterans (ASO) more frequently and at a younger age, and their condition affects their legs more widely [30, 31]. Diabetes patients who get ASO frequently experience ischemia, claudication, ulceration, and gangrene as a result. Different risks apply to diabetics who are being treated with insulin, sulfonylurea, or diet, depending on certain parameters, particularly plasma lipoprotein [32]. In all types of diabetes mellitus, hypertension and cigarette smoking appear to be significant risk factors for the onset of peripheral arteriosclerosis. In the continuing investigation, occlusive peripheral artery disease was present in about 30% of the diabetic patients [33]. The prevalence of ASO was significantly influenced by age, according to an analysis of the risk factors. The other risk variables that were shown to be most important included smoking and hypertension,

which are both known to be linked to arteriosclerosis obliterans in non-diabetic subjects. In the current study, a history of smoking was almost necessary for the emergence of severe ASO. Smokers with diabetes who were on a diet had the highest incidence of severe arteriosclerosis obliterans (SASO). Despite having equal fasting glucose levels, the SASO prevalence was lower in the group of participants on antihyperglycemic medications than in the group receiving diet therapy, and it was lower in that receiving insulin therapy than in those receiving oral sulfonylurea therapy [34].

Homocystinuria

Homocystinuria is a genetically recessive disease that only affects one in 80,000 people, making it a highly uncommon risk factor for arteriosclerosis. While in general this would be regarded as a negligible portion of the population, this is not the case for heterozygotes, whose rates are estimated to range from 0.5 to 1.5% in diverse communities. By the age of 50, heterozygotes for cystathione synthase deficiency may be considerably more likely to develop coronary artery disease [35]. It is a hereditary disorder characterised by a deficit in the enzyme hepatic cystathione synthase. Methionine, an amino acid found in proteins, is usually used to make homocysteine. Since it is quickly transformed into cystathione, which is required in other metabolic processes. It is regarded as a hazardous intermediate. Homocystinuria prevents individuals from effectively converting homocysteine to cystathione, which results in higher homocysteine levels. It affects aberrant cellular proliferation in blood vessels and make the normally thin cellular linings of the walls extremely permeable. It is believed that these changes in cellular function serve as the starting point for later arteriosclerotic modifications. In addition to the medical worry over homocystinuria heterozygotes' potential risk of developing cardiovascular disease (CVD), it has been hypothesised that diets deficient in vitamin B may also be a risk factor. It is likely that this vitamin facilitates the conversion of homocysteine to cystathione. Since vitamin B deficiency is associated with an increased risk of developing arteriosclerosis. Additionally, after three weeks on a reduced vitamin B diet, people started excreting homocysteine. Diets high in meat and dairy products, also linked to an elevated risk of cardiovascular disease (CVD), have methionine-to-vitamin B6 ratios that are significantly greater than those found in fruits and vegetables [36].

Environmental factor

Arteriosclerosis is influenced by environmental risk factors such as nutrition, smoking, stress, and a sedentary lifestyle, in addition to inherited dyslipidemia, hypertension, and diabetes. It might also be influenced by protective factors related to environmental illnesses and parasite infestations [37]. The risk factors for arteriosclerosis have been the subject of extensive research to identify and quantify them. In essence, a lot of these studies have helped us understand the role that high-cholesterol diets, hypertension, smoking, and inactivity play in the aetiology of arteriosclerosis. that the development of arteriosclerosis may be influenced by hereditary and dietary variables that greatly raise plasma homocysteine concentrations [38,39].

Animal models exposed to CO for an extended period below the lethal dose may develop atherosclerotic alterations [40], including heart deterioration and sclerotic changes in the aorta arteries. Continuous exposure to low levels of CO causes hypercholesterolemia, cholesterol ester deposition in the aortic vessels, an increase in serum low-density lipoproteins [41], and an abnormal isozyme pattern of lactate dehydrogenase in aortic tissues, which is a sign of atherosclerotic disease. Along with these atherosclerotic alterations brought on by CO exposure, this pollutant causes tissue B6 deficiency at low levels and alters the vitamin's pattern of urine excretion [42].

Biomarkers for Atherosclerosis

The identification of biological markers of atherosclerosis is crucial for preventing the development, progression, and complications of the disease. Algorithms stratifying the cardiovascular risk are useful tools for detecting people who would benefit from primary and secondary prevention. However, some patients at risk fall in the lower categories [43]. For this reason, recent studies are focusing on additional screening methods, such as serum, genetic and imaging markers of atherosclerosis, as extensively reviewed Tibaut et al. [44, 45]. The most widely recognized nonspecific biological marker of inflammation is high-sensitivity C-reactive protein (hsCRP). CRP is a plasma protein synthesized primarily by the liver and, to a lesser extent, by endothelial and atheroma cells [46]. It is an acute-phase reactant, released in response to acute inflammatory stimuli, and is considered a risk biomarker for cardiovascular events [47]. Yousuf et al. [46] reviewed CRP involvement in the atherosclerotic process. CRP is considered proatherogenic, acting at early and crucial stages of plaque formation. It binds oxLDL and triggers monocyte-macrophage activation and inhibits eNOS, impairing vasodilation and

promoting endothelial dysfunction. Furthermore, in atherosclerosis, IL-6 produced by foam cells induces the production of small quantities of CRP. For clinical purposes, most trials found the cutting value of hsCRP ≥ 2 mg/l a reliable marker of inflammation and, therefore, a predictor of CV events, although the CRP value for assessing the risk for CVD is limited [48].

Arterial wall calcification is a marker of atherosclerosis. A useful tool to assess it is the coronary artery calcium score (CAC) that measures the amount of calcium in the coronary artery wall by means of computed tomography (CT). CAC is a good predictor of CVE and is useful for the stratification of asymptomatic individuals and to detect those who will benefit from early treatment, such as subjects with moderate risk for CVD. The Agatston score is used to measure wall calcium, which is standardized for coronary arteries. However, it is also used for another vascular trees but with great variability [49]. A CAC = 0 is considered very low risk for CVD whereas that >300 -400 defines patients at high risk. Within the context of the Multi-Ethnic Study of Atherosclerosis (MESA), participants were followed during 10 years to evaluate the accuracy of biomarkers to predict CVD. Among the negative risk markers for CVD, a CAC = 0 was the most accurate to reclassify patients into a very low risk group and, therefore, less likely to benefit from preventive pharmacological treatment [49]. Coronary calcification has better correlation with CVE than other imaging methods, and having calcifications in other vascular beds increases the risk for CVE [50]. In this sense, another MESA study demonstrated that multisite atherosclerosis increased the risk for CVD, especially in subjects with risk factors. The authors also found that CAC is the strongest predictor marker for CVD [51]. Considering the concerns about the risk associated with radiation and the advantages of having an accurate stratification of CVD risk, it is important to establish which subjects will benefit for further explorations. In this regard, latest guidelines recommend CAC as a useful tool to refine risk assessment upward or downward in individuals with predicted risk of 5% to 20% for CVD [52].

Treatment

The prevalence of peripheral artery disease (PAD) has grown globally. The indications for treating PAD include a restriction in the amount of pain-free walking distance (intermittent claudication) or tissue ulceration [53]. In many arterial locations, endovascular therapy has replaced open surgical surgery as the preferred form of treatment since it is less invasive [54, 55]. Treatment of the common femoral artery (CFA) is not yet included in this. In this situation, surgical endarterectomy is still regarded as the "gold standard" of care. The primary 1-year patency rates following surgical endarterectomy are 85–95%, according to the literature [56].

Endovascular therapy may be able to replace open surgery, at least for specific structural features of CFA lesions, according to several modest studies [57–60].

The CFA is recognised as a difficult vessel segment for endovascular therapy because of the probable high stress brought on by its placement in a motion segment. Consequently, surgery has always been used to treat this vascular segment. Although certain trials, particularly the randomised controlled TECCO trial, have recently shown favourable outcomes following endovascular therapy [61]. A therapy option for the CFA is stent angioplasty, which has a poor rate of target lesion revascularization (TLR). In most instances, post-procedure problems can be managed conservatively or endovascularly. In order to discover potential lesion characteristics that may benefit from one or the other revascularization strategy, additional comparative studies comparing this endovascular alternative with surgical therapy are required [62].

Arteriosclerotic Obstruction treated by LDL

It is well known that the level of low-density lipoprotein (LDL) cholesterol in the blood is closely related to the clinical occurrence of obstructive coronary lesions like angina or myocardial infarction. Serial angiograms have shown that reliable LDL cholesterol removal by an extracorporeal LDL adsorption technique is followed by a regression of the arteriosclerotic lesions [63]. A relationship between hypercholesterolemia, particularly elevated levels of LDL, and the incidence of ischemic coronary lesions has generally been recognised, as described in the reports of the Framingham study. However, there have not been many descriptions of dyslipidemia, in relation to ASO in the lower extremities, published [64]. In 33 ASO patients with hypercholesterolemia, a novel therapeutic approach called LDL adsorption was used. Most patients' subjective ASO symptoms improved. The results of the physiologic tests were consistent with and backed up the improvements in subjective complaints. Neither before nor after the LDL adsorption treatments were any major issues or undesirable effects noticed. In treating ASO patients with dyslipidemia, LDL adsorption seems to be a helpful and secure therapy option [65].

Transluminal Treatment of Arteriosclerotic Obstruction

Successful use of surgical techniques like endarterectomy, angioplasty, and grafting has largely been limited to highly specialised vascular surgeons, of which there are far too few to deal realistically with the millions of patients experiencing the painful, disabling, or fatal effects of the disease. Additionally, surgical success in treating occlusions in smaller arteries is practically

limited [66-68]. Consequently, gangrene brought on by femoropopliteal occlusion sometimes necessitates amputation, even though aorto-iliac thromboendarterectomy has typically been successful. If tolerable intermittent claudication is the only handicap that results from low femoral lesions. [69] These facts led to the creation of a safe, easy-to-use technique for directly overcoming arteriosclerotic constriction and occlusion in the leg arteries, which was the result of pursuing a previously suggested strategy [70, 71].

Transluminal recanalization is a relatively easy procedure. Any physician experienced with vascular catheterization can master the technique; thus, the vascular surgeon's hard-earned expertise is not necessary. A therapeutic approach to arteriosclerotic illness that necessitates the assistance of a skilled vascular surgeon would not begin to scratch the surface of the necessary therapy for a disease that claims a million American lives each year! The cost to the patient is kept to a minimum because the treatment is suited for outpatient application and only occasionally necessitates a brief hospital stay [72].

Recent advancement in the treatment

Diet- For people with atherosclerosis, a low-cholesterol, low-fat diet (20–25 grammes per day) has been recommended. Effects of such a diet on patients with atherosclerosis include a decrease in the mortality rate of patients with coronary thrombosis and myocardial infarction following the initial heart attack, a decrease in total serum lipids, neutral fats, chylomicron, and lipomicron counts, as well as an improvement in wellbeing, work capacity, and energy output [73].

The following overview describes a low-cholesterol, low-fat diet:

Eat only low-cholesterol foods, such as whole grains and all animal fats. Sparingly use vegetable fats. (Plant sterols such as phytosterol and sitosterol are not significantly absorbed by the gastrointestinal tract, but a high-fat diet appears to increase cholesterol synthesis.) It is advised to take a daily vitamin supplement containing vitamin A concentrate. Soups produced with skimmed milk, vegetable broth, bouillon, and fat-free vegetable soups are all permitted foods. Lean meats, broiled, roasted, baked, or boiled fish and two whole eggs maximum each week; egg whites as required. All whether cooked or raw, but particularly the green and yellow vegetables that are high in vitamin A, such as mustard greens, beetroot greens, chard, spinach, carrots, and kale. All types of fruits, including dried, tinned, and uncooked varieties. Every day, consume tomatoes or citrus. Any type of raw or cooked fruit or

vegetable salad, as well as gelatin salads. Serve with boiled or low-fat dressings, such as those made with refined mineral oil, spices, and vinegar. Beverages included Tea, coffee, or coffee substitutes: tomato juice, fruit, or vegetable juices.

Foods to be avoided:

Cream Soups. All glandular organ meats, including liver, brains, kidneys, and sweetbreads; pig and extremely fatty meats; fat fish; and fish roe. Whole milk, cream, Swiss, cheddar, and all rich cheeses and cheese spreads; excessive butter and milk products. Egg yolks and pancakes, waffles, coffee cakes, muffins, doughnuts, and hot breads. Desserts include baked goods, frozen desserts, rich cakes, and cookies that are created with cream and egg yolks. The excessive use of fats in any form, including suet, chicken, or pork fat, vegetable or olive oils, and salad dressings.

Lipotropic Agents- The efficacy of lipotropic drugs in preventing or absorbing atherosclerotic lesions in experimental animals with atherosclerosis has prompted clinical trials and reports in human patients with coronary atherosclerosis. Patients with coronary atherosclerosis have been encouraged to take choline and inositol to lower their death and morbidity rates. A daily average of 6 g of the base has been the dosage for only choline. 4c-inositol alone has been taken on average every day for up to three years at 3 g [74].

Endocrine Agents- The thyroid has a long history of influencing lipid and cholesterol metabolism. It has been discovered that thyroid extract, taken in quantities of typically 1 to 3 grains per day, is effective in lowering the hypercholesterolemia linked to hypothyroidism. Thyroid extract has been proven to be effective in lowering any associated hypercholesterolemia in patients with subnormal basal metabolic rates or subnormal blood iodine levels. For a better metabolic approach to the condition, it is therefore advised to measure the blood iodine level, or basal metabolic rate, in atherosclerotic patients [75].

The combination of a low-cholesterol, low-fat diet (20–25 grammes per day), a choline-inositol supplement taken after meals, and, when indicated by clinical and/or laboratory examinations, thyroid and/or oestrogen and androgen hormones has been shown to produce the most satisfactory therapeutic outcomes in atherosclerotic patients.

Torsion of the spermatic cord in the new born

Even though there are not many documented cases of torsion of the spermatic cord in new born, the fact that we have seen two of these cases in the past nine months has thinking that the condition might be more prevalent than the published data suggests. If so, it would suspicion that one prevalent cause of unilateral atrophic testicle, which is frequently seen in urologic practise. Since atrophy or suppurative gangrene may only be prevented by early diagnosis and knowledge that such a condition happens, doctors may become more aware of the issue [76].

References

1. Stöllberger C, Finsterer J. Role of infectious and immune factors in coronary and cerebrovascular arteriosclerosis. *Clin Diagn Lab Immunol.* 2002 Mar; 9(2): 207-15.
2. Damjanov I, Linder J, Anderson WAD. *Anderson's Pathology*. 10th ed. St. Louis, MO: Mosby; 1996.
3. Kumar V, Abbas AK, Fausto N, Robbins SL, Cotran RS. *Robbins and Cotran Pathologic Basis of Disease*. 7th ed. Philadelphia, PA: Elsevier Saunders; 2005.
4. Rabson SM. Arteriosclerosis: definitions. *Am J Clin Pathol.* 1954; 24: 472.
5. Schwartz CJ, Mitchell JR. The morphology, terminology and pathogenesis of arterial plaques. *Postgrad Med J.* 1962; 38: 25–34.
6. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, InsullJr W, Richardson M, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD. A definition of the intima of human arteries and of its atherosclerosis-prone regions: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. *Arterioscler Thromb.* 1992;12 (1):120–134.
7. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. *Arterioscler Thromb Vasc Biol.* 2000;20(5):1262–1275.
8. Fishbein GA, Fishbein MC. Arteriosclerosis: rethinking the current classification. *Arch Pathol Lab Med.* 2009 Aug;133(8):1309-16.
9. Monckeberg JG. Ueber die reine Mediaverkalkung der Extremitätenarterien und ihr Verhalten zur Arteriosklerose. *Virchows Arch Pathol Anat.* 1903;171: 141–167.
10. Nordborg C, Nordborg E, Petursdottir V, Fyhr IM. Calcification of the internal elastic membrane in temporal arteries: its relation to age and gender. *Clin Exp Rheumatol.* 2001;19(5):565–568.

11. Micheletti RG, Fishbein GA, Currier JS, Singer EJ, Fishbein MC. Calcification of the internal elastic lamina of coronary arteries. *Mod Pathol.* 2008;21: 1019–1028.
12. Santos VP, Pozzan G, Castelli Júnior V, Caffaro RA. Arteriosclerosis, atherosclerosis, arteriolosclerosis, and Monckeberg medial calcific sclerosis: what is the difference? *J Vasc Bras.* 2021;20:e20200211.
13. Amann K. Media calcification and intima calcification are distinct entities in chronic kidney disease. *Clin J Am Soc Nephrol.* 2008;3(6):1599-605.
14. Micheletti RG, Fishbein GA, Currier JS, Fishbein MC. Mönckeberg sclerosis revisited: a clarification of the histologic definition of Mönckeberg sclerosis. *Arch Pathol Lab Med.* 2008;132(1):43-7.
15. Monckeberg JG. Über die reine Mediaverkalkung der Extremitätenarterien und ihr Verhalten zur Arteriosklerose. *Virchows Arch Pathol Anat.* 1903;171(1):141-167.
16. Johnson RC, Leopold JA, Loscalzo J. Vascular Calcification: Pathobiological Mechanisms and Clinical Implications. *Circ Res.* 2006; 99(10):1044-1059.
17. Piepoli MF, Hoes AW, Agewall S. et al., European guidelines on cardiovascular disease prevention in clinical practice,” *European Heart Journal*, 2016; 37(29): 2315–2381.
18. Hansson GK, Inflammation, atherosclerosis, and coronary artery disease, *The New England Journal of Medicine*, 2005; 352(16): 1685–1695.
19. Libby P, Hansson GK, Inflammation and immunity in diseases of the arterial tree: players and layers, *Circulation Research*, 2015; 116(2): 307–311.
20. Morbiducci U, Kok AM, Kwak BR, Stone PH, Steinman DA, Wentzel JJ, Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry, *Thrombosis and Haemostasis*, 2018; 115(03), 484–492.
21. O'Keeffe LM, Simpkin AJ, Tilling K. et al., “Sex-specific trajectories of measures of cardiovascular health during childhood and adolescence: a prospective cohort study,” *Atherosclerosis*, 2018; 278: 190–196.
22. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S, Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease,” *Circulation Research*, 2016; 118 (4): 535–546.
23. Mauricio MD, Aldasoro M, Ortega J, Vila JM, Endothelial dysfunction in morbid obesity,” *Current Pharmaceutical Design*, 2013; 19(32): 5718–5729.
24. Vanhoutte PM, Shimokawa H, Tang EHC, Feletou M, Endothelial dysfunction and vascular disease, *Acta Physiologica*, 2009; 196(2): 193–222.

25. Molinaro R, Boada C, del Rosal GM, et al., “Vascular inflammation: a novel access route for nanomedicine,” *Methodist DeBakey Cardiovascular Journal*, 2016; 12(3): 169-174.
26. Kyu HH, Abate D, Abate KH, et al., “Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017,” *The Lancet*, 2018; 392: 1859–1922.
27. Burchardt P, Żurawski J, Zuchowski B, et al., “Low-density lipoprotein, Its susceptibility to oxidation and the role of lipoprotein-associated phospholipase A2 and carboxyl ester lipase lipases in atherosclerotic plaque formation,” *Archives of Medical Science*, 2013; 1(1): 151–158.
28. Amann K. Media calcification and intima calcification are distinct entities in chronic kidney disease. *Clin J Am Soc Nephrol*. 2008; 3(6):1599-605.
29. Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: Prevalence, mechanism, detection, and clinical implications. *Catheter Cardiovasc Interv*. 2014; 83 (6): 212-220.
30. Kashgarian M. Pathology of small blood vessel disease in hypertension. *Am J Kidney Dis*. 1985; 5(4): 104A–110A.
31. Olson JL. Hyaline arteriolosclerosis: new meaning for an old lesion. *Kidney Int*. 2003; 63(3): 1162–1163.
32. Gamble CN. The pathogenesis of hyaline arteriolosclerosis. *Am J Pathol*. 1986; 122(3): 410–420.
33. Fishbein GA, Fishbein MC. Arteriosclerosis: rethinking the current classification. *Arch Pathol Lab Med*. 2009; 133(8): 1309-1316.
34. McCully KS. Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis. *Amer. J. Pathol*. 1969; 56:111-122.
35. McCully KS. Homocysteinemia and arteriosclerosis. *Amer. Heart J*. 1972; 83(4):571-573.
36. Gensler SW, Halmovici H, Hotter! P, Stelnman C, Beneventano TC. Study of vascular lesions in diabetic, nondiabetic patients. *Arch Surg* 1965; 91: 617-622.
37. Strandness DE Jr, Priest RE, Gibbons GE. Combined clinical and pathologic study of diabetic and nondiabetic peripheral arterial disease. *Diabetes* 1964; 13: 366-372.

38. Beach KW, Brunzell JD, Conquest LL, Strandness DE Jr. The correlation of arteriosclerosis obliterans with lipoproteins in insulin-dependent and non-insulin-dependent diabetes. *Diabetes* 1979; 28: 836.
39. Beach KW, Strandness DE Jr. Arteriosclerosis obliterans and associated risk factors in insulin-dependent and noninsulin-dependent diabetes. *Diabetes* 1980; 29: 882-888.
40. Beach KW, Brunzell JD, Strandness DE Jr. Prevalence of severe arteriosclerosis obliterans in patients with diabetes mellitus. Relation to smoking and form of therapy. *Arteriosclerosis*. 1982; 2(4): 275-80.
41. Mudd SH, Havlik R, Levy HL, McKusick VA, Feinleib M. A study of cardiovascular risk in heterozygotes for homocystinuria. *Amer. J. Hum. Genet.* 1981; 33: 883-893.
42. Gruberg ER, Raymond SA, Beyond cholesterol. *Atlantic Monthly*. 1979; 59:165.
43. Hoefer IE, Steffens S, Ala-Korpela M, et al., "Novel methodologies for biomarker discovery in atherosclerosis," *European Heart Journal*, 2015; 36 (39): 2635–2642.
44. Tibaut M, Caprnda M, Kubatka P, et al., "Markers of atherosclerosis: part 1 - serological markers," *Heart, Lung & Circulation*, 2019; 28(5): 667–677.
45. Tibaut M, Caprnda M, Kubatka P, et al., "Markers of atherosclerosis: part 2 – genetic and imaging markers," *Heart, Lung & Circulation*, 2019; 28(5): 678–689.
46. Yousuf O, Mohanty BD, Martin SS, et al., "High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link?," *Journal of the American College of Cardiology*, 2013; 62(5): 397-408.
47. Koenig W, "High-sensitivity C-reactive protein and atherosclerotic disease: from improved risk prediction to risk guided therapy," *International Journal of Cardiology*, 2013 168(6): 5126-5134.
48. Ridker PM, Danielson E., Fonseca FAH, et al., "Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein," *The New England Journal of Medicine*, 2008; 359(21): 2195–2207.
49. Ridker PM, Everett BM, Thuren T, et al., "Antiinflammatory therapy with canakinumab for atherosclerotic disease," *The New England Journal of Medicine*, 2017; 377(12): 1119–1131.
50. Blaha MJ, Cainzos-Achirica M, Greenland P, et al., "Role of coronary artery calcium score of zero and other negative risk markers for cardiovascular disease: the multi-ethnic study of atherosclerosis (MESA)," *Circulation*, 2016; 133(9): 849–858.

51. Rodríguez-Palomares JF, Evangelista A, Masip, “Aortic calcium score and vascular therosclerosis in asymptomatic individuals: beyond the coronary arteries,” *Revista Española de Cardiología* (English Edition), 2016; 69(9): 813-816.
52. Bos D, Leening MJG, Kavousi M, et al., “Comparison of atherosclerotic calcification in major vessel beds on the risk of all-cause and cause-specific mortality: the Rotterdam study,” *Circulation. Cardiovascular Imaging*, 2015; 8: 1-9.
53. Clerc G, Caraman PL, Christian B, Demicheli RG, Rouillard JM, Stoessel JM, Hypocholesterolemie et hypergammaglobulinémie. Relations avec l'épidémiologie de l'atherome. *Tropical Cardiology*, 1982, pp, 35- 39.
54. McCully KS. Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis. *Amer. J. Pathol.* 1969; 56: 111-122.
55. McCully KS. Homocysteinemia and arteriosclerosis. *Amer. Heart J.* 83(4):571-573, 1972.
56. Astrop P, Kjeldsen K, Wanstrap J. *J. Atheroscler. Res.* 1967; 7: 343.
57. Truhaut R, Boudene C, Claude JR. *Ann. Biol. Clin.* 1968; 26: 1249.
58. Nizhegorodov Vm, and Markhotskii YaL. *Gig. i. Sanit.* 34:96, 1969.
59. Fowkes FGR, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, Norman, PE, Sampson UKA, Williams LJ, Mensah G, et al, Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. *Lancet* 2013; 382, 1329–1340.
60. Rooke, TW, Hirsch AT, Misra S, Sidawy AN, Beckman JA, Findeiss L, Golzarian J, Gornik HL, Jaff MR, Moneta GL, et al. American College of Cardiology Foundation Task Force; American Heart Association Task Force. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA Guideline Recommendations): A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *J. Am. Coll. Cardiol.* 2013, 61, 1555–1570.
61. Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clement DL, Collet JP, Cremonesi A, De Carlo M, Erbel R, Fowkes FGR, et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: The Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). *Eur. Heart J.* 2011, 32, 2851–2906.

62. Kang JL, Patel VI, Conrad MF, LaMuraglia GM, Chung T, Cambria RP, Common femoral artery occlusive disease: Contemporary results following surgical endarterectomy. *J. Vasc. Surg.* 2008, 48, 872–877.
63. Bohme T, Romano, L.; Macharzina, R.-R.; Noory, E.; Beschorner, U.; Jacques, B.; Bürgelin, K.; Flügel PC, Zeller T, Rastan A, Midterm Results of Directional Atherectomy for the Treatment of Atherosclerotic Common Femoral Artery Disease. *EuroIntervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol.* 2021, 17, 260–266.
64. Bonvini RF, Rastan A, Sixt S, Noory E, Schwarz T, Frank U, Roffi M, Dorsaz PA, Schwarzwälder U, Bürgelin K, et al., Endovascular Treatment of Common Femoral Artery Disease: Medium-Term Outcomes of 360 Consecutive Procedures. *J. Am. Coll. Cardiol.* 2011, 58, 792–798.
65. Azéma L.; Davaine, J.; Guyomarch, B.; Chaillou, P.; Costargent, A.; Patra, P.; Gouëffic, Y. Endovascular Repair of Common Femoral Artery and Concomitant Arterial Lesions. *Eur. J. Vasc. Endovasc. Surg.* 2011, 41, 787–793.
66. Stricker, H.; Jacomella, V. Stent-Assisted Angioplasty at the Level of the Common Femoral Artery Bifurcation:Midterm Outcomes. *J. Endovasc. Ther.* 2004, 11, 281–286.
67. EDWARD, W. S.: Autogenous vein patch reconstruction of small leg arteries after endarterectomy. *J. Cardiovas. Surg.* 1962, 3: 161.
68. Dewees, J A, Dale, W A, Mahoney, E B, and ROB, C G, Thromboendarterectomy and autogenous vein grafts distal to the inguinal ligament. *Circulation* 28: 710, 1963; and *Cardiovascular Surgery* 1963, Supplement to *Circulation*, 1964, 29: 171.
69. Wilder, J R, and Michaels, G L, Current status of vascular surgery. *Am. J. M. Sc.* 1963, 245: 582.
70. Warren, R, John, H T, Shepard, R C, and Villavicencio, J L, Studies on patients with arteriosclerotic obliterative disease of the femoral artery. *Surgery*, 1961, 49: 1.
71. Dotter, C T, Catheter access and visualization of the cardiovascular system. In VIAMONTE, M.: *Progress in Angiography*. Springfield, Illinois, Charles C Thomas, Publisher. In press.
72. Niles, N R, and Dotter, C T, Coronary radiography and endarterectomy: Post-mortem study of feasibility of surgery. *Circulation*, 1963, 28: 190.
73. Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. *Circulation*. 1964 Nov; 30:654-670.

74. Morrison LM. Arteriosclerosis; recent advances in the dietary and medicinal treatment. *J Am Med Assoc.* 1951, 145(16):1232-6.
75. Leinw, I, and Moore, D H, Simultaneous Studies on the Serum Lipids and the Electrophoretic Pattern of the Serum Protein in Man, *Am. Heart J.*, 1949, 38:455-480.