

A comprehensive review on Advancements in Metal Oxide photocatalysis: Exploring Ternary and Binary Systems

¹Jayashri Waghmode, Sagar Sodmise¹, Ashwini Jadhav¹, Supriya Shinde¹, Rushikesh Sapkal²
and ^{1*}Ramchandra Sapkal

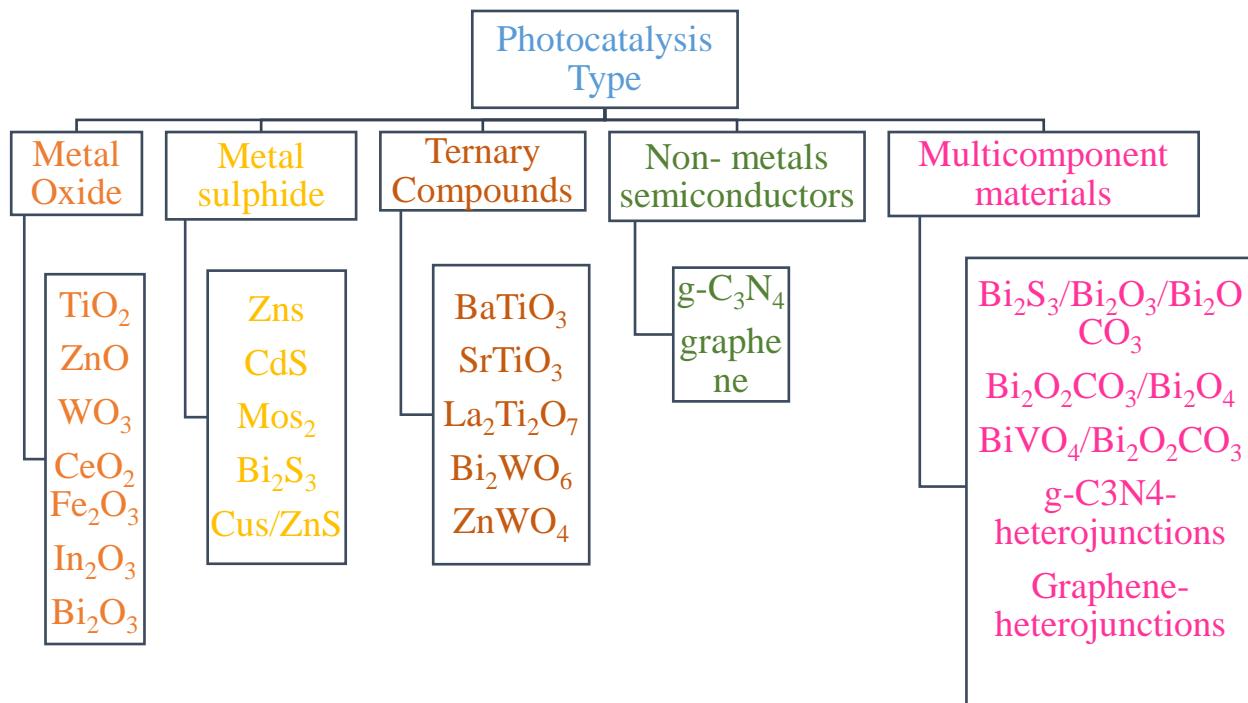
1. ¹ Material Laboratory, Department of Physics, T.C. College, Baramati, (413102)
2. Department of Engineering Sustainable Technology Management Focus on Industry 4.0, SRH
University of Applied Science Berlin, Berlin- 10587, Germany.

Abstract:

Metal oxide have emerged as distinguished candidates for photocatalysis, presenting sustainable answers for harnessing solar power and environmental remediation. This evaluation delves into recent tendencies in each binary and ternary metallic oxide as photocatalysis. Binary oxides, together with titanium dioxide (TiO₂) and Zinc oxide (ZnO), have been significantly studied, but their barriers have spurred investigated into ternary systems. Ternary metal oxide (TMOs), incorporating three one of a kind metallic factor, exhibit better photocatalytic properties due to synergistic consequences arising from diverse digital and optical traits. This summary gives a view of compositions of binary and ternary metallic oxides, emphasizing their roles in tactics like water splitting, pollutant degradation and hydrogen manufacturing. The challenges and future possibilities in metal oxide photocatalysis also are mentioned, highlighting the possible combination of binary and ternary metal oxides with their roles. At the same time as binary metallic oxides have laid the foundation for photocatalysis, the inherent boundaries have inspired the investigation of ternary counterparts, unveiling synergistic results that decorate performance. TMOs photocatalysts exhibit various compositions and programs, showcasing their potential in addressing global challenges. Understanding mechanisms consisting of price carriers, surface states, and doping techniques gives important insights for optimizing each binary and ternary systems. This overview underscores the significance of modern substances layout and synthesis techniques to liberate the total potential of metal oxide photocatalysts. As studies in this discipline keeps, metal oxides stand poised to contribute substantially to a sustainable and cleanser future.

Keywords: Metal oxide, Binary and ternary metal oxide, Photocatalyst.

Correspondence: sapakalramchandra33@gmail.com


Introduction:

Water covers across the earth is about (70%) of planet's surface. Water which is smooth and secure is essential to all residing beings [1]. It plays a vital role in biological process including hydration, digestion and cellular functions. Human activities, industrial process, and agriculture have significant impacts on water quality and availability. Issues such as water pollution, over extraction of ground water, and climate change can affect the balance of water resources. Sustainable management of water is crucial for maintaining ecosystem and ensuring the well- being of human societies. Due to fast increasing industrialization and world population is mainly responsible for water pollution, because hazardous waste is directly mixed into the water and it is not only effect on human but also aquatic life which present in water [2]. During each year about 1.8 million children are dying due to drinking polluted water, [3-4] also lot of diseases causes due to polluted water and thus purification of water is paramount importance. However, availability of surface water mostly invariable and also qualities of water is always being declined due to continuous release of chemicals direct to environment, mainly due to aggravation of agricultural, industrial, domestic, pharmaceutical,

etc. production [5-6]. There are a lot of techniques used for water purification. Now a days purification of water is carried out usually form physical and chemical techniques like UV treatment, chlorination, ozonation, etc. Purification techniques are depending on the region, available sources and also pollutants present in water [7-11].

Photocatalysis plays crucial role in the development of sustainable technologies, particularly in the context environmental protection clean energy production. Photocatalysis is a process that uses light to activate a substance (catalyst) to speed up a chemical reaction. The catalyst involved in photocatalysis is typically a semiconductor cloth that absorbs photons of light and uses that energy to drive a chemical reaction. This process is widely studied and applied in diverse fields, consisting of environmental remediation, water purification, and energy conversion. In this process it utilizes solar energy or UV- seen mild for degradation of organic pollutants into inorganic particle [12-18]. Since there are a variety of metallic semiconductor which used as a photocatalytic material such as (TiO_2 , CaO , ZnO , WO_3 , $ZnWO_4$, ZrO_2 , $BiTiO_3$, $SrTiO_3$, Fe_2O_3 , Ag_2CO_3 , $BiOBr$, $BiOCl$, $CaFe_2O_4$, $BiOCl$, $ZnFe_2O_4$) and metal sulphide such as (ZnS , CdS , $CuInS_2$, $AgIn_5S_8$ etc.) Metal oxide have gained significant attention within the subject of photocatalysis because of their specific houses and capacity packages in various environmental and energy- related process. It's important to note that the effectiveness of a photocatalyst depends on various factors, along with specific application, light source, and target molecules. Researchers continue to explore and develop new material oxide photocatalysts for improved performance and expanded applications. Depending upon the properties of metal oxide there are a various type of photocatalysis found in nanoscience which are used for water purification. Some of them are listed below [19-33].

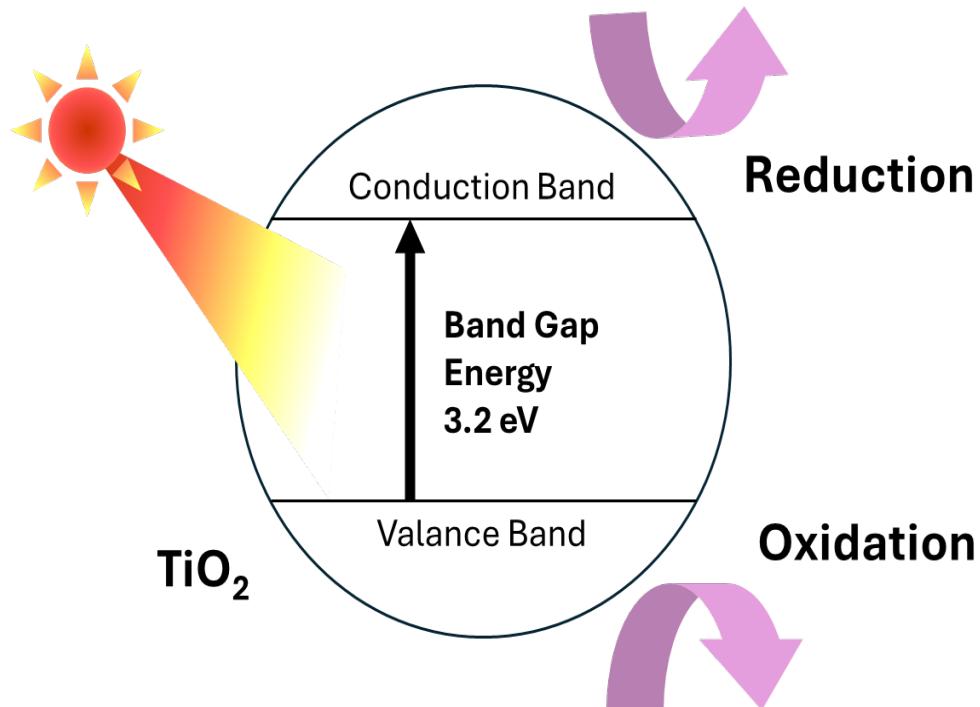
Fig.No.1: Types of Photocatalysis used to remove pollutants from water.

There are a various deposition techniques are used to deposit above metal oxide in nanoscale range like a thin layer on glass/conducting plate or as an electrode [34]

Table No.1: Thin film deposition Techniques with materials and application

Sr.No.	Deposition Method	Thin film material	Application
1.	Ultrasonic Spray Pyrolysis	ZnO, SnO ₂ -Fe ₂ O ₃ , TiO ₂ , Gd-CeO ₂	Solar cell, sensors, Metal oxide coating, solid oxide fuel Cell, Photocatalysis [35]
2.	Chemical Bath Deposition Method	ZnS, PbS, ZnO	Solar cell, Optoelectronics, Photocatalysis [36-38]
3.	Successive Ionic Layer Adsorption and reaction (SILAR)	CdO, ZnO, CuO	Gas Sensing, Photocatalysis, Supercapacitor [39-41]
4.	Sol-gel Method	TiO ₂ , TiO ₂ -SiO ₂ , CZTS	Solar cell, Photocatalysis, Gas Sensing Self-Cleaning [42-45]
5.	Electrodeposition	Cu ₂ O, Ga:CdS, Co(OH) ₂ , WO ₃	Optoelectronics, Solar cell, Supercapacitor, Photocatalysis [46-49]
6.	Chemical Vapour Deposition (CVD)	B: ZnO, F: Mn ₃ O ₄	Solar cell, Optoelectronics, Photocatalysis, Gas sensing [50-51]
7.	Plasma enhanced-Chemical Vapour deposition	TiO ₂ , SiO ₂	Antireflecting coating, dielectric and biomedical applications, Photocatalysis [52-55]
8.	Magnetron Sputtering	TiO ₂ -SiO ₂ , CdTe,	Photocatalysis, Solar cell [56-57]
9.	Triode Sputtering	AlN, In ₂ O ₃	Surface acoustic wave application, photovoltaic and optoelectronic application [58-59]
10.	DC sputtering	TiO ₂ , ITO, Mn ₃ N ₂	Photocatalysis, Photovoltaic, Supercapacitor [60-62]
11.	Flash evaporation	A-FAPbI ₃ , CdTe	Solar cells [63-64]
12.	Laser Evaporation	NiMoS ₂ , TiO ₂ /Au/TiO ₂	Dye- sensitized solar cells, Photocatalysis [65-66]

Photocatalysis:


Photocatalysis refers to the acceleration of a chemical reaction through the absorption of light by a substance known as a photocatalyst. Photocatalysis is a process that involves the use of a catalyst to accelerate a photoreaction, typically driven by light. Efficiency of photocatalysts depends on various factors such as bandgap, charge carrier mobility, surface area, ability to suppress recombination Photocatalysis. In this process light is used to activate catalyst to speed up chemical reaction. Fujishima et al. use TiO_2 as a photocatalyst for the production O_2 and H_2 from water and discovered water photolysis [67]. For growth in other potential software and to improve the photocatalytic efficiency the easy binary steel oxide or metal free semiconductor, such as ZnO , TiO_2 , WO_3 , etc have been widely studied as a photocatalyst [68-73]. The efficiency of photocatalytic method depends on properties of photocatalyst such as a) surface area material which includes adsorption phenomenon b) morphology of a material on which electron-hole recombination depends [74].

Some important Points about Photocatalysis:

- 1. Semiconductor Catalysts:** Photocatalysis often involves semiconductor materials, such as titanium dioxide (TiO_2) or Zinc Oxide (ZnO). These materials can absorb light energy and generate electron- hole pairs, initiating chemical reactions.
- 2. Absorption of Photons:** When photocatalyst is exposed to light, it absorbs photons. The energy from these photons is sufficient to excite electrons in the semiconductor material from the valence band to the conduction band and form electron-hole pairs.
- 3. Generation of Electron-Hole Pairs:** The absorbed energy promotes electron from the valence band to conduction band and leave behind a positively charged hole in the valence band. The formation of these electron-hole pairs is a key step in the photocatalytic process.
- 4. Redox Reactions:** Separated electrons and holes in the semiconductor can participate in the redox reactions.
- 5. Reaction with target Molecules:** The excited electrons and holes migrate to the surface of the semiconductor and react with adsorbed molecules or contaminants.
- 6. Regeneration of Catalyst:** Catalyst provide a pathway for electron-hole pairs. After the completion of reaction catalyst can return to its original state and cycle repeated as long as light is available. It does not take part in a chemical reaction; it only increases the rate or speed of chemical reaction.
- 7. Applications:**
 - Environmental Remediation:** To remove the pollutants from air and photocatalysis method is used. The reactive species generated by the catalyst can break down organic pollutants, toxins and pathogens.
 - Water Purification:** It can be employed to disinfect water by killing bacteria and other microorganisms.
 - Self-Cleaning surfaces:** Photocatalytic materials are used to create self-cleaning surfaces, as they can break down and remove organic contaminants when exposed to light.
 - Hydrogen Production:** Photocatalysis is also investigated for its potential in generating hydrogen through water splitting, which is a clean and sustainable energy source.
- 8. Challenges:** While photocatalysis holds promise for various applications, challenges include the need for efficient catalysts, optimization of reaction condition, and addressing issues related to catalyst stability and reusability.
- 9. Research and Development:** Ongoing research aims to develop aims to develop

new photocatalytic materials, improve the efficiency of existing catalysts, and explore novel applications for this technology.

Fig No. 2 Basic Mechanism for TiO_2 as Photocatalysis

Water pollution due to industrialization has grown to be a continuously growing trouble, which is affecting human lifestyles and the aquatic ecosystem international in all factors [75]. It is expected that over one thousand million humans dwelling in the arid areas could have a primary shortage of water via 2025 [76]. It's far, consequently, essential to treat waste water, in any other case they can pose both acute and persistent effect on human lifestyles and within the environment. Presently, there are four maximum popular strategies comprising physical adsorption, flocculation, chemical oxidation and photo-catalytic degradation, that have been followed to grid of natural contaminants from water [77-78]. The major drawback of those strategies is that they go way an expansion of chemical reagents and polymer electrolytes in water, which led to the era of unmanageable sludge and deposits. Photocatalysis then again, depends on in-situ image generated hydroxyl radicals (OH), superoxide radicals and positively charged (H^+) which completely decompose natural contaminants. For this reason, photocatalysis is an efficient, environmentally- friendly, low price and an easy operation for the elimination of contaminants [79]. To begin with, traditional porous cloth and nano based totally substances have been being used as adsorbents. The maximum usually used adsorbents for waste water treatment are activated carbon, zeolites, carbon nanotubes, mesoporous silica and chitosan beads [80]. However, they confronted technical obstacles including inefficiency, operational problems, excessive energy necessities, and lower financial gain. A perfect adsorbent ought to have high porosity and a big floor location with precise adsorbent web sites. Therefore, alternative photocatalytic materials have been extraordinarily suitable [81].

Metal oxide and Metal sulphide as a photocatalyst:

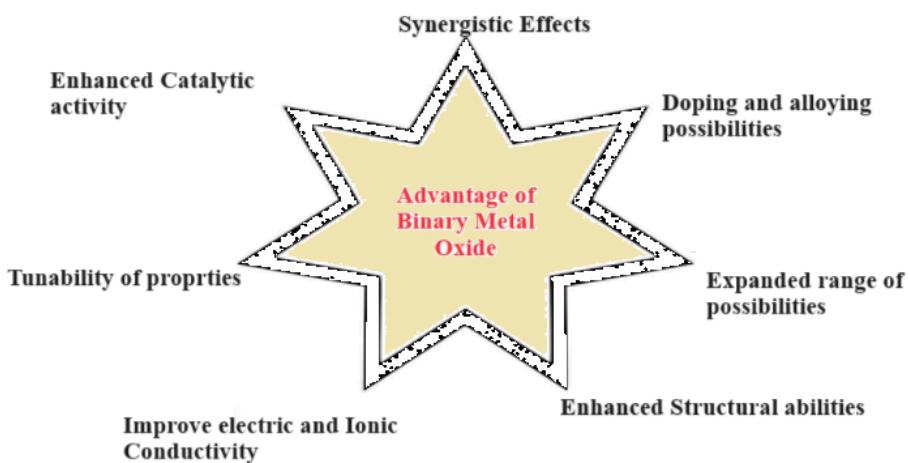
Metal oxide and metal sulphide skinny film photocatalysts can decompose an expansion of organic pollution into less dangerous response merchandise and the most common pollutant used for degradation exams are MB, RhB and MO dye. The development in thin film technology offers a wide commercial utility of steel oxide skinny movie photocatalysts. Even though TiO_2 and ZnO are most studied and commercially a success material because of sure obstacles consisting of extensive band hole, lower efficiency, and so on, there's scope for different metallic oxides and metal sulphides. The surface morphology, electronic shape, crystalline length, thickness and deposition method of skinny film particularly in fluences its photocatalytic performance. In case of steel oxide, doing of steel or non-metal not handiest reduce the band hole electricity however additionally decreases the recombination of electrons and holes. Similarly, the photo electrocatalysis phenomenon determined to be efficient to make use electron mob present at the conduction band after irradiation. The degradation mechanism is related to the digital shape of the photocatalyst and bonding among pollutant species and catalyst. The addition of small amount of surfactant can be one of the methods to growth the surface vicinity of thin films. Further, utilization of a spread of substrate and modification in electronic shape can effectively decorate photocatalytic performance [82].

Here is a list of some metal oxides and metal sulphides which are commonly used as photocatalysts, along with their roles, efficiencies and band gap values are given in table. Depending upon the crystal structure, doping, and specific synthesis methods efficiency and band gap values are varied.

Table No.2: List of metal oxide and metal sulphides with role, efficiency and band gap.

Sr. No.	Name of Metal Oxide	Role	Efficiency	Band Gap
1.	Titanium Dioxide (TiO_2)	Water purification, air Purification, and self-cleaning surfaces	High efficiency in UV light and limited Efficiency in visible light	3.0- 3.2eV
2.	Zinc Oxide (ZnO)	Water treatment and UV Filter in sunscreens	Moderate efficiency in UV and Visible light	3.3 eV
3.	Iron Oxide (Fe_2O_3)	Water oxidation and Pollutant degradation	Moderate efficiency in visible light	2.0- 2.2eV
4.	Tungsten Oxide (WO_3)	Water splitting and Environmental Remediation	Variable efficiency in Visible light range	2.4- 2.8eV

Sr. No.	Name of Metal Sulphide	Role	Efficiency	Band Gap
1	Cadmium sulphide (CdS)	Hydrogen production and Pollutant degradation	High efficiency in Visible light range	2.4- 2.5eV
2	Copper sulphide (Cu_2S)	Solar energy conversion And environmental Applications	Variable efficiency In Visible light range	variable
3	Zinc sulphide (ZnS)	Hydrogen production And photocatalytic Degradation	Moderate efficiency In visible light range	3.5- 3.8eV

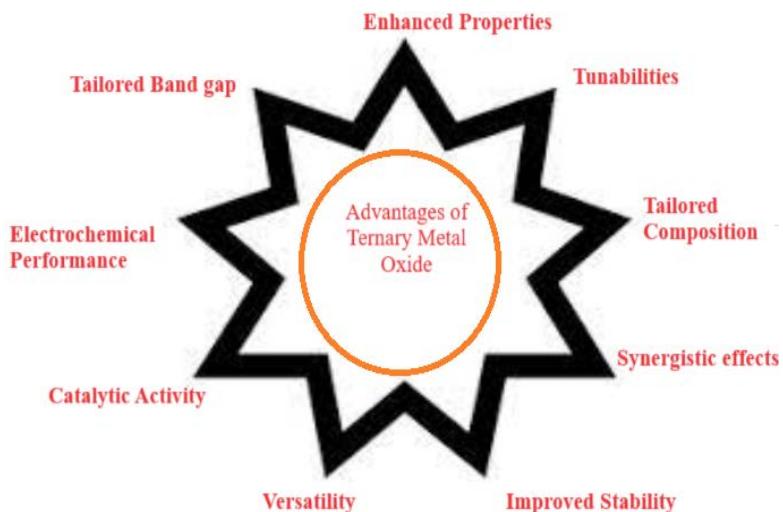

4	Nickel sulphide (NiS)	Hydrogen evolution Reactions	Variable efficiency In Visible light range	Variable
---	-----------------------	------------------------------	--	----------

These materials are actively researched, advancements in synthesis techniques and modifications continue to improve their efficiency and broaden their applicability in various photocatalytic process, but alone metal oxide and metal sulphide has some limitations, after 2009 maximum awareness is carried out to improve the possessions of nanomaterials such as chemical reactivity, optical, electrical and magnetic properties for better result [83], thus to increase the efficiency we need binary and ternary metal oxide as a photocatalyst.

Binary Metal Oxide as Photocatalysis:

Binary metal oxides, which are compounds composed of two different metal elements and oxygen, can offer several advantages over single metal oxides. It's important that the specific benefits depend on the choice of metal elements, their ratios, and the intended application. Researchers often explore different combinations to discover new materials with optimized properties for specific technological needs.

Fig No. 3 Advantages of Binary Metal oxide


As a promising compound, titania (TiO_2) has been broadly used within the photocatalytic degradation of natural pollution of water and air. Pure TiO_2 has electricity hole of 3.2eV, hence UV light is necessary to excite electrons on the TiO_2 floor. To spark off the photocatalyst with better performance and longer wavelength, some strategies have been added [84]. One strategy is put together TiO_2 /metallic oxide nanocomposites which include $\text{SiO}_2/\text{TiO}_2$ [85], CdS/TiO_2 [86], ZnO/TiO_2 [87], $\text{SnO}_2/\text{TiO}_2$ [88]. Lifetime of photo-brought about price consists of is a prime factor for improving photocatalytic interest. As for ZnO-TiO_2 [89], the electron transfers from the conduction band of ZnO to that of TiO_2 below illumination, and conversely, the holes switch from the valence band of TiO_2 to that of ZnO . Accordingly, the life of photoinduced pairs increases because their recombination charge decreases. So that it will expand the range of excitation energies of TiO_2 into the visible vicinity, materials of the slender band gap, such as ZnO , had been coupled with TiO_2 [90]. The band gap of ZnO and TiO_2 is quite massive so they are not capable of absorb the essential part of the sun spectrum i.e. the seen location efficaciously and may simply absorb a small range of the UV area this is why the highest quality and powerful utilization of sun radiations in this subject is still considered as a assignment. Numerous attempts have been made so that the absorption range of TiO_2 and ZnO can be extended to the visible light

region, which consist of deposition of noble metals, doping of transition metals and coupling of various semiconductor systems, etc [91]. Out of a majority of these available metal oxides, ZnO has demonstrated to be a fantastic and promising photocatalyst, because of its first-rate characteristics find it irresistible less expensive price, precise oxidation potential, large free excitation binding strength, flexibility in fabrication, and many others. Moreover, every other critical issue is the rapid recombination charge of photo generated electron hole pairs inside TiO₂ NPs. So, plenty of tries had been made to discover techniques facilitating the photoactivation of TiO₂ below seen-mild. TiO₂ doping with numerous materials could be taken into consideration as an easy approach to improve its photocatalytic overall performance [92]. substrate and the ratio TiO₂/RhB were also investigated in the photocatalytic degradation of RhB. There may be a hinderance that limits using ZnO as a photoelectrode due to its n-kind behaviour, that doesn't permit ZnO to manipulate its electric conductivity [93]. Whilst transition metals like Ag, Mn, Fe, Co, Cr, Al and so forth are doped in ZnO there may be a alternate inside the electric, optical and magnetic residences with the changing of doping concentration [94]. surface defects create energetic sites and this is why analysing the effect of doped ZnO on its photocatalytic hobby turns into vital [95]. In current years, graphene oxide is referred to as a promising cloth to improve the structural stability and photocatalytic pastime of TiO₂ NPs [96]. Alternatively, adhesion of TiO₂ NPs to head layers now not simplest prompted electrons for photovoltaic reactions but also prevented recombination with photo- generated holes [97]. In a single record, a simple solvothermal approach changed into used to graft TiO₂ NPs on go (TiO₂- pass as binary nanocomposite). Photograph- degradation interest of TiO₂- pass nanocomposite became investigated on the degradation of MB and MO beneath UV-mild irradiation and in comparison, with pristine TiO₂ NPs [98].

Ternary Metal Oxide as a photocatalysis:

In comparison with the smooth binary metallic oxides, the TMOs own a greater complex composition, chemical bonding among exceptional cations and oxygen atoms and bendy crystal structure [99]. Ternary metal oxides, which consist of three different elements, offer several advantages over binary metal oxides. It's important that the advantages of ternary metal oxides depend on the specific elements chosen and their proportions. The selection of elements and their ratios plays a critical role in determining the material's properties and performance in various applications.

Fig No. 4 Advantages of Ternary Metal oxide

The complex shape gives vast benefits for TMOs as photocatalysts. First, the band aspects potentials for TMOs are appropriate for diverse photoinduced reactions. Further the presence of diverse metal ions within the lattice of TMOs allows for added flexibility in designing and enhancing the band shape in addition to different photophysical residences. Through band shape engineering, the capacity of sun harvesting and photon-excitation energy conversion may be optimized, inclusive of the fabrication of heterojunctions and the introduction of illness states [100]. Given that water photocatalysis changed into observed with the aid of Fijishima et al. with TiO_2 as a photocatalyst for the manufacturing of O_2 and H_2 from water, many kinds of semiconductors have been fabricated and implemented as photocatalyst, especially for the broadly studied oxide materials. It's far usual that the homes of substances significantly modified in keeping with their synthesis process, chemical additives, morphologies, floor amendment, elements doping and the formation of composites and so on [101-106]. The simple binary steel oxides or metal loose semiconductors, consisting of TiO_2 , ZnO , WO_3 and C_3N_4 , and so on., had been broadly studied as photocatalyst to understand the essential precept. The development of photocatalytic efficiency and the enlargement in different potential applications [107-112]. The ternary metal oxides (AxByOz) with extra flexible band structures own splendid capability to be carried out as photocatalysts. A big range of ternary steel oxides (TMOs) had been fabricated, and their photocatalytic pastime associated with morphology, electronic, optical houses need to be further investigated. The one-of-a-kind constituent elements inside the AxByOz composition provide a couple of alternatives to regulate the substances with tuning physical and chemical house for an enhancement of photocatalytic performance [113].

Here is some ternary heterostructure metal oxide are listed with their role and band gap value,

Table No.3: List of Ternary Metal Oxide with role and their band gap value.

Sr. No.	Ternary Oxide	Role	Band Gap
1.	$\text{TiO}_2/\text{SnO}_2/\text{ZnO}$ [114]	Photocatalysis-Degradation of Water pollutants, Water splitting	TiO_2 -3.2eV SnO_2 -3.6eV ZnO -3.3eV
2.	$\text{MoS}_2/\text{WS}_2/\text{Graphene}$ [115]	Catalysis, Electronic device Hydrogen Evolution reaction Pollutant Degradation	MoS_2 -1.8eV WS_2 -1.6eV
3.	$\text{Cu}_2\text{O}/\text{ZnO}/\text{CuO}$ [116]	Photocatalysis, Gas sensing Degradation of Organic pollutants, Hydrogen production	Cu_2O -2.0eV ZnO -3.3eV CuO -1.2eV
4.	$\text{Bi}_2\text{WO}_6/\text{BiVO}_4/\text{TiO}_2$ [117]	Photocatalysis- Water oxidation, Pollutant degradation	Bi_2WO_6 -2.8ev BiVO_4 -2.4eV TiO_2 -3.2eV
5.	$\text{CdS}/\text{ZnS}/\text{Ag}_2\text{S}$ [118]	Photocatalysis- Hydrogen Production, Degradation of Pollutants, Optoelectronics	CdS -2.4eV ZnS -3.7eV Ag_2S -1.0eV
6.	$\text{Fe}_2\text{O}_3/\text{TiO}_2/\text{Graphene}$ [119]	Photocatalysis, Energy storage	Fe_2O_3 -2.2eV TiO_2 -3.2eV

7.	Cu ₂ MoO ₆ /BiVO ₄ /WO ₃ [120]	Photocatalysis, Photovoltaics	CuInS ₂ -1.5eV CdS-2.4eV ZnS-3.7eV
8.	ZnO/SnO ₂ /In ₂ O ₃ [121]	Gas sensing, Photocatalysis	ZnO-3.3eV SnO ₂ -3.6eV In ₂ O ₃ -3.75eV
9.	Bi ₂ MoO ₆ /BiVO ₄ /WO ₃ [122]	Photocatalysis, Water Treatment	Bi ₂ MoO ₆ -1.89eV BiVO ₄ -2.4eV WO ₃ -2.8eV
10.	TiO ₂ /Fe ₂ O ₃ /SnO ₂ [123]	Photocatalysis, Solar cells	TiO ₂ -3.2eV Fe ₂ O ₃ -2.2eV SnO ₂ -3.6eV
11.	NiO/CdS/ZnO [124]	Photocatalysis, Optoelectronics	NiO-3.5eV CdS-2.4eV ZnO-3.3eV
12.	CuFeO ₂ /Fe ₂ O ₃ /ZnO [125]	Photocatalysis, Energy Storage	CuFeO ₂ -1.15eV Fe ₂ O ₃ -2.2eV ZnO-3.3eV
13.	Cu ₂ O/ZnO/In ₂ O ₃ [126]	Photocatalysis, Gas sensing	Cu ₂ O-2.2eV ZnO-3.3eV In ₂ O ₃ -3.75eV
14.	MoS ₂ /WS ₂ /BN [127]	Electronic devices, Catalysis	MoS ₂ -1.8eV WS ₂ -1.6eV BN-2.44eV
15.	ZnO/CdS/Graphene [128]	Photocatalysis, Energy Storage	ZnO-3.3eV CdS-2.4eV

Efficiency and performance of these ternary heterostructures may be motivated by way of several things, including synthesis methods, morphologies, and specific experimental conditions.

Conclusion:

In Conclusion, metal oxide represents key area of research for harnessing solar energy and mitigating environmental challenges. Binary metal oxide has been extensively studied, but their limitations have led to explore ternary metal oxide systems. The diverse composition of ternary metal oxide photocatalysts have shown promising consequences in various applications, including water splitting, pollutant degradation, and hydrogen production. The understanding of underlying mechanisms, such as charge carriers, surface states, and doping strategies, provides insights into optimizing the photocatalytic activity of both binary and ternary systems.

ACKNOWLEDGEMENT:

One of the author Jayashri Vitthal Waghmode would like to acknowledge to Mahatma Jyotiba Phule Research and Training Institute for providing financial support.

References:

1. Kurniawan, T.A.; Sillanpää, M.E.; Sillanpää, M. Nanoadsorbents for Remediation of Aquatic Environment: Local and Practical Solutions for Global Water Pollution Problems. *Crit. Rev. Environ. Sci. Technol.* 2012, 42, 1233–1295. [CrossRef]
2. F. Wang, C. Wang, Z. Yu, K. Xu, X. Li, Y. Fu, Two multifunctional Mn(II) metalorganic frameworks: synthesis, structures and applications as photocatalysis and luminescent sensor, *Polyhedron* 105 (2016) 49–55, <https://doi.org/10.1016/j.poly.2015.11.043>.)
3. (Kumar, S.; Ahlawat, W.; Bhanjana, G.; Heydarifard, S.; Nazhad, M.M.; Dilbaghi, N. Nanotechnology- Based Water Treatment Strategies. *J. Nanosci. Nanotechnol.* 2014, 14, 1838–1858. [CrossRef]
4. 7. Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J.J. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. *Acc. Chem. Res.* 2012, 46, 834–843. [CrossRef]
5. OECD. OECD Environmental Performance Reviews: Chile 2016; OECD Environmental Performance Reviews; OECD Publishing: Paris, France, 2016.
6. United Nations, Department of Economic and Social Affairs, Population Division. *World Population Prospects: The 2017 Revision, Key Findings and Advance Tables*; United Nations: New York, NY, USA, 2017.
7. S. Baruah, J. Dutta, Nanotechnology applications in pollution sensing and degradation in agriculture: a review. *Environ. Chem. Lett.*, 2009, 7(3), 1-14.
8. A. Sugunan, J. Dutta, Pollution Treatment, Remediation, and Sensing. In *Nanotechnology*, Harald, K., Ed. Wiley-VCH: Weinheim, 2008; Vol. 3
9. K. Gopal, S.S. Tripathy, J. L. Bersillon, S. P. Chlorination byproducts, their toxic odynamics and removal from drinking water. *J. Hazard. Mater.* 2007, 140 (1-2), 1-6.
10. R. Sadiq, M. J. Rodriguez, Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review. *Sci. Total Environ.* 2004, 321 (1-3), 21-46
11. Jayashri Waghmode, Sagar SodmiseP 1 P, Ashwini JadhavP 1 P, Supriya Shinde P 1 P, and P 1*PRamchandra Sapkal Review on Waste Water under Different Regions and Water Purification Techniques and Their Limitations *IJISET - International Journal of Innovative Science, Engineering & Technology*, Vol. 10 Issue 08, August 2023 ISSN (Online) 2348
12. P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, V. K. Gupta, A. Hosseini-Bandegharaei, S. Agrawal, Ag₃PO₄ modified phosphorus and sulphur co-doped graphitic carbon nitride as a direct Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation, *J. Photochem. Photobiol. A*. 374, (2019) 22-35.

13. A. J. Hoffman, E. R. Carraway, M. R. Hoffmann, Photocatalytic production of H₂O₂ and organic peroxides on quantum-sized semiconductor colloids, *Environ. Sci. Technol.* 28 (1994) 776-785.
14. P. Singh, P. Raizada, D. Pathania, G. Sharma, P. Sharma, Microwave induced KOH activation of guava peel carbon as an adsorbent for Congo red dye removal from aqueous phase, *Ind. J. Chem. Technol.* 20 (2013) 305-311. 36
15. V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, V. K. Gupta, P. Singh, Review on augmentation in photocatalytic activity of CoFe₂O₄ via heterojunction formation for photocatalysis of organic pollutants in water, *J. Saudi Chem. Soc.* (2019) <https://doi.org/10.1016/j.jscs.2019.07.003>.
16. F. Schütt, S. Signetti, H. Krüger, S. Röder, D. Smazna, S. Kaps, S. N. Gorb, Y. K. Mishra, N. M. Pugno, R. Adelung, Hierarchical self-entangled carbon nanotube tube networks, *Nat. Commun.* 8 (2017) 1215.
17. P. Singh, P. Shandilya, P. Raizada, A. Sudhaik, A. R. Sani, A. H. Bandegharae, Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification, *Arab. J. Chem.* (2018) DOI: 10.1016/j.arabjc.2018.12.001.
18. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, *Chem. Rev.* 95 (1995) 69-96.)
19. Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. *Water Res.* 2016, 88, 428–448. [CrossRef]
20. Kumar, S.G.; Rao, K.S.R.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO₂, WO₃ and ZnO). *Appl. Surf. Sci.* 2017, 391, 124–148. [CrossRef]
21. Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A review of solar and visible light active TiO₂ photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. *Mater. Sci. Semicond. Process.* 2016, 42, 2–14. [CrossRef]
22. Mondal, C.; Singh, A.; Sahoo, R.; Sasmal, A.K.; Negishi, Y.; Pal, T. Preformed ZnS nanoflower prompted evolution of CuS/ZnS p–n heterojunctions for exceptional visible-light driven photocatalytic activity. *New J. Chem.* 2015, 39, 5628–5635. [CrossRef]
23. Lee, G.-J.; Wu, J.J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. *Powder Technol.* 2017, 318, 8–22. [CrossRef]
24. Wang, C.; Lin, H.; Xu, Z.; Cheng, H.; Zhang, C. One-step hydrothermal synthesis of flowerlike MoS₂/CdS heterostructures for enhanced visible-light photocatalytic activities. *RSC Adv.* 2015, 5, 15621–15626. [CrossRef]

25. Mourão, H.A.J.L.; Lopes, O.F.; Ribeiro, C.; Mastelaro, V.R. Rapid hydrothermal synthesis and pH-dependent photocatalysis of strontium titanate microspheres. *Mater. Sci. Semicond. Process.* 2015, 30, 651–657. [CrossRef]
26. Rastogi, M.; Kushwaha, H.S.; Vaish, R. Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets. *Electron. Mater. Lett.* 2016, 12, 281–289. [CrossRef]
27. Hua, Z.; Zhang, X.; Bai, X.; Lv, L.; Ye, Z.; Huang, X. Nitrogen-doped perovskite-type La₂Ti₂O₇ decorated on graphene composites exhibiting efficient photocatalytic activity toward bisphenol A in water. *J. Colloid Interface Sci.* 2015, 450, 45–53. [CrossRef] [PubMed]
28. Zhang, J.; Yuan, X.; Jiang, L.; Wu, Z.; Chen, X.; Wang, H.; Wang, H.; Zeng, G. Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized bismuth tungstate based on interfacial charge transfer. *J. Colloid Interface Sci.* 2018, 511, 296–306. [CrossRef] *Catalysts* 2019, 9, 52 34 of 43
29. Sethi, Y.A.; Praveen, C.S.; Panmand, R.P.; Ambalkar, A.; Kulkarni, A.K.; Gosavi, S.W.; Kulkarni, M.V.; Kale, B.B. Perforated N-doped monoclinic ZnWO₄ nanorods for efficient photocatalytic hydrogen generation and RhB degradation under natural sunlight. *Catal. Sci. Technol.* 2018, 8, 2909–2919. [CrossRef]
30. Thalluri, S.M.; Hernández, S.; Bensaid, S.; Saracco, G.; Russo, N. Green-synthesized W- and Mo-doped BiVO₄ oriented along the {0 4 0} facet with enhanced activity for the sun-driven water oxidation. *Appl. Catal. B Environ.* 2016, 180, 630–636. [CrossRef]
31. Kubacka, A.; Fernández-García, M.; Colón, G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. *Chem. Rev.* 2012, 112, 1555–1614. [CrossRef]
32. Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Xiong, W.; Wang, L. Graphitic carbon nitride (g-C₃N₄)₋based photocatalysts for water disinfection and microbial control: A review. *Chemosphere* 2019, 214, 462–479. [CrossRef] [PubMed]
33. Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C₃N₄ -based photocatalysts. *Appl. Surf. Sci.* 2017, 391, 72–123. [CrossRef]
34. R.S. Pedanekar, S.K. Shaikh, K.Y. Rajpure Thin film photocatalysis for environmental remediation: A status review Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, 416004, India)
35. S. Rahemi Ardekani, A. Sabour Rouh Aghdam, M. Nazari, A. Bayat, E. Yazdani, E. Saievar-Iranizad, A comprehensive review on ultrasonic spray pyrolysis technique: mechanism, main parameters and applications in condensed matter, *J. Anal. Appl. Pyrolysis* 141 (2019) 104631, <https://doi.org/10.1016/j.jaap.2019.104631>

36. R. Shan, J. Yi, J. Zhong, S. Yang, Effect of sulphur pressure on properties of ZnS thin film prepared by chemical bath deposition technique, *J. Mater. Sci. Mater. Electron.* 30 (2019) 13230–13237, <https://doi.org/10.1007/s10854-019-01686-2>.

37. E. Barrios-Salgado, Y. Rodríguez-Lazcano, J.P. Pérez-Orozco, J. Colin, P. Altuzar, J. Campos, D. Quesada, Effect of deposition time on the optoelectronics properties of PbS thin films obtained by microwave-assisted chemical bath deposition, *Adv. Condens. Matter Phys.* 2019 (2019), <https://doi.org/10.1155/2019/5960587>.

38. S. Velanganni, A. Manikandan, J.J. Prince, C.N. Mohan, R. Thiruneelakandan, Nanostructured ZnO coated Bi₂S₃ thin films: enhanced photocatalytic degradation of methylene blue dye, *Phys. B Condens. Matter* 545 (2018) 383–389, <https://doi.org/10.1016/j.physb.2018.07.005>.)

39. M.R. Das, P. Mitra, SILAR-synthesized CdO thin films for improved supercapacitive, photocatalytic and LPG-sensing performance, *Chem. Pap.* 73 (2019) 1605–1619, <https://doi.org/10.1007/s11696-019-00712-1>.

40. S. Fairose, S. Ernest, Nanostructured ZnO sensor fabricated by successive ionic layer adsorption and reaction method for ammonia sensing application, *Phys. B Condens. Matter* 557 (2019) 63–73, <https://doi.org/10.1016/j.physb.2018.12.041>.

41. M.R. Das, A. Mukherjee, P. Maiti, S. Das, P. Mitra, Studies on multifunctional properties of SILAR synthesized CuO thin films for enhanced supercapacitor, photocatalytic and ethanol sensing applications, *J. Electron. Mater.* (2019), <https://doi.org/10.1007/s11664-019-06940-1>.

42. A. Ziti, B. Hartiti, H. Labrim, S. Fadili, A. Batan, M. Tahri, A. Ridah, O. Mounkachi, A. Benyoussef, P. Thevenin, Characteristics of kesterite CZTS thin films deposited by dip-coating technique for solar cells applications, *J. Mater. Sci. Mater. Electron.* 30 (2019) 13134–13143, <https://doi.org/10.1007/s10854-019-01676-4>.

43. J. Yu, X. Zhao, Q. Zhao, Photocatalytic activity of nanometer TiO₂ thin films prepared by the sol-gel method, *Mater. Chem. Phys.* 69 (2001) 25–29, [https://doi.org/10.1016/S0254-0584\(00\)00291-1](https://doi.org/10.1016/S0254-0584(00)00291-1).

44. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, TiO₂ thin films by a novel sol-gel processing for gas sensor applications, *Sensor. Actuator. B Chem.* 68 (2000) 189–196, [https://doi.org/10.1016/S0925-4005\(00\)00428-7](https://doi.org/10.1016/S0925-4005(00)00428-7).

45. M. Zhang, L.E. R. Zhang, Z. Liu, The effect of SiO₂ on TiO₂-SiO₂ composite film for self-cleaning application, *Surface. Interfac.* 16 (2019) 194–198, <https://doi.org/10.1016/j.surfin.2018.10.005>.)

46. C. Ravichandiran, A. Sakthivelu, R. Davidprabu, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, H. Algarni, S. AlFaify, In-depth study on structural, optical, photoluminescence and electrical properties of electrodeposited Cu₂O thin films for optoelectronics: an effect of

solution pH, Microelectron. Eng. 210 (2019) 27–34,
<https://doi.org/10.1016/j.mee.2019.03.013>.

47. O.K. Echendu, S.Z. Werta, F.B. Dejene, A.A. Ojo, I.M. Dharmadasa, Ga doping of nanocrystalline CdS thin films by electrodeposition method for solar cell application: the influence of dopant precursor concentration, *J. Mater. Sci. Mater. Electron.* 30 (2019) 4977–4989, <https://doi.org/10.1007/s10854-019-00794-3>.

48. N.C. Maile, S.K. Shinde, R.R. Koli, A.V. Fulari, D.Y. Kim, V.J. Fulari, Effect of different electrolytes and deposition time on the supercapacitor properties of nanoflake-like Co(OH)₂ electrodes, *Ultrason. Sonochem.* 51 (2019) 49–57, <https://doi.org/10.1016/j.ultsonch.2018.09.003>.

49. A.S. Martins, P.J.M. Cordeiro-Junior, G.G. Bessegato, J.F. Carneiro, M.V.B. Zanoni, M.R. de V. Lanza, Electrodeposition of WO₃ on Ti substrate and the influence of interfacial oxide layer generated in situ: a photoelectrocatalytic degradation of propyl paraben, *Appl. Surf. Sci.* 464 (2019) 664–672, <https://doi.org/10.1016/j.apsusc.2018.09.054>.)

50. S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, C. Ballif, Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells, *Thin Solid Films* 515 (2007) 8558–8561, <https://doi.org/10.1016/j.tsf.2007.03.130>.

51. L. Bigiani, D. Barreca, A. Gasparotto, C. Sada, S. Martí-Sánchez, J. Arbiol, C. Maccato, Controllable vapor phase fabrication of F:Mn₃O₄ thin films functionalized with Ag and TiO₂, *CrystEngComm* 20 (2018) 3016–3024, <https://doi.org/10.1039/c8ce00387d>)

52. C. Martinet, V. Paillard, A. Gagnaire, J. Joseph, Deposition of SiO₂ and TiO₂ thin films by plasma enhanced chemical vapor deposition for antireflection coating, *J. Non-Cryst. Solids* 216 (1997) 77–82, [https://doi.org/10.1016/S0022-3093\(97\)00175-0](https://doi.org/10.1016/S0022-3093(97)00175-0).

53. W. Yang, C.A. Wolden, Plasma-enhanced chemical vapor deposition of TiO₂ thin films for dielectric applications, *Thin Solid Films* 515 (2006) 1708–1713, <https://doi.org/10.1016/j.tsf.2006.06.010>.

54. H. Szymanowski, A. Sobczyk, M. Gazicki-Lipman, W. Jakubowski, L. Klimek, Plasma enhanced CVD deposition of titanium oxide for biomedical applications, *Surf. Coating. Technol.* 200 (2005) 1036–1040, <https://doi.org/10.1016/j.surfcoat.2005.01.092>.

55. M. Maeda, T. Watanabe, Evaluation of photocatalytic properties of titanium oxide films prepared by plasma-enhanced chemical vapor deposition, *Thin Solid Films* 489 (2005) 320–324, <https://doi.org/10.1016/j.tsf.2005.05.007>

56. B. Liu, X. Zhao, N. Zhang, Q. Zhao, Photocatalytic Mechanism of TiO₂ – CeO₂ Films Prepared by Magnetron Sputtering under UV and Visible Light vol. 595, (2005), pp. 203–211, <https://doi.org/10.1016/j.susc.2005.08.016>.

57. X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells, *Sol. Energy* 77 (2004) 803–814, <https://doi.org/10.1016/j.solener.2004.06.006>.

58. V. Mortet, A. Vasin, P.Y. Jouan, O. Elmazria, M.A. Djouadi, Aluminium nitride films deposition by reactive triode sputtering for surface acoustic wave device applications, *Surf. Coating. Technol.* 176 (2003) 88–92, [https://doi.org/10.1016/S0257-8972\(03\)00018-5](https://doi.org/10.1016/S0257-8972(03)00018-5).

59. G. Golan, A. Axelevitch, B. Gorenstein, A. Peled, Novel type of indium oxide thin films sputtering for opto-electronic applications, *Appl. Surf. Sci.* 253 (2007) 6608–6611, <https://doi.org/10.1016/j.apsusc.2007.01.030>.)

60. S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Photocatalytic TiO₂ thin film deposited onto glass by DC magnetron sputtering, *Thin Solid Films* 392 (2001) 338–344, [https://doi.org/10.1016/S0040-6090\(01\)01054-9](https://doi.org/10.1016/S0040-6090(01)01054-9).

61. Y. Demirhan, H. Koseoglu, F. Turkoglu, Z. Uyanik, M. Ozdemir, G. Aygun, L. Ozyuzer, The controllable deposition of large area roll-to-roll sputtered ITO thin films for photovoltaic applications, *Renew. Energy* 146 (2020) 1549–1559, <https://doi.org/10.1016/j.renene.2019.07.038>.

62. G. Durai, P. Kuppusami, T. Maiyalagan, M. Ahila, P. Vinoth Kumar, Supercapacitive properties of manganese nitride thin film electrodes prepared by reactive magnetron sputtering: effect of different electrolytes, *Ceram. Int.* 45

63. F. Xu, Y. Tian, W. Wang, Y. Zhu, L. Zeng, B. Yao, Z. Fang, H. Xu, R. Xu, F. Xu, F. Hong, L. Wang, In situ deposition of black α -FAPbI₃ films by vacuum flash evaporation for solar cells, *J. Mater. Sci. Mater. Electron.* 30 (2019) 8381–8389, <https://doi.org/10.1007/s10854-019-01155-w>.

64. A.K. Papikyan, V.A. Gevorgyan, N.R. Mangasaryan, P.P. Gladyshev, Characterization of vacuum flash evaporated CdTe thin films for solar cell application, *J. Phys. Conf. Ser.* 945 (2018), <https://doi.org/10.1088/1742-6596/945/1/012013>.)

65. A. Arulraj, B. Subramanian, M. Ramesh, G. Senguttuvan, Effect of active sites in pulsed laser deposited bimetallic NiMoS₂ thin films for solar energy conversion, *Mater. Lett.* 241 (2019) 132–135, <https://doi.org/10.1016/j.matlet.2019.01.068>.

66. I. Olvera-Rodríguez, R. Hernández, A. Medel, C. Guzmán, L. Escobar-Alarcón, E. Brilllas, I. Sirés, K. Esquivel, TiO₂/Au/TiO₂ multilayer thin-film photoanodes synthesized by pulsed laser deposition for photoelectrochemical degradation of organic pollutants, *Separ. Purif. Technol.* 224 (2019) 189–198, <https://doi.org/10.1016/j.seppur.2019.05.020>)

67. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. *Nature* 1972, 238, 37–38. [CrossRef] [PubMed]

68. Linsebigler, A.L.; Lu, G.; Yates Jr, J.T. Photocatalysis on TiO₂ surfaces: Principles, mechanisms, and selected results. *Chem. Rev.* 1995, 95, 735–758. [CrossRef]

69. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. *Nature* 1997, 388, 431–432. [CrossRef]

70. Wu, X.; Yin, S.; Dong, Q.; Liu, B.; Wang, Y.; Sekino, T.; Lee, S.W.; Sato, T. UV, visible and near-infrared lights induced NO_x destruction activity of (Yb, Er)-NaYF₄/C-TiO₂ composite. *Sci. Rep.* 2013, 3, 2918. [CrossRef]

71. Komatsuda, S.; Asakura, Y.; Vequizo, J.J.M.; Yamakata, A.; Yin, S. Enhanced photocatalytic NO_x decomposition of visible-light responsive F-TiO₂/(N, C)-TiO₂ by charge transfer between F-TiO₂ and (N, C)-TiO₂ through their doping levels. *Appl. Catal. B* 2018, 238, 358–364. [CrossRef]

72. Noda, C.; Asakura, Y.; Shiraki, K.; Yamakata, A.; Yin, S. Synthesis of three-component C₃N₄/rGO/C-TiO₂ photocatalyst with enhanced visible-light responsive photocatalytic deNO_x activity. *Chem. Eng. J.* 2020, 390, 124616. [CrossRef]

73. Gu, Z.; Cui, Z.; Wang, Z.; Qin, K.S.; Asakura, Y.; Hasegawa, T.; Tsukuda, S.; Hongo, K.; Maezono, R.; Yin, S. Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism. *Appl. Catal. B* 2020, 279, 119376. [CrossRef]

74. Jingwen Wang 1, Takuya Hasegawa 1, Yusuke Asakura 2 and Shu Yin 1,3, Recent Advances in Ternary Metal Oxides Modified by N Atom for Photocatalysis Catalysts 2022, 12, 1568. <https://doi.org/10.3390/catal12121568>
<https://www.mdpi.com/journal/catalysts>

75. Li Lin¹, Haoran Yang¹ and Xiaocang Xu² *Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review *Frontiers in Environmental Science* www.frontiersin.org June 2022 | Volume 10 | doi: 10.3389/fenvs.2022.880246

76. P. H. Gleick, A look at twenty-first century water resources development, *Water Int.* 25 (2000) 127–138.)

77. S. Sharma, A. Bhattacharya, Drinking water contamination and treatment techniques, *Appl. Water Sci.* 7 (2017) 1043–1067.

78. S. Bolisetty, M. Peydayesh, R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis, *Chem. Soc. Rev.* 48 (2019) 463–487.

79. L.-H. Zhang, Y. Zhu, B.-R. Lei, Y. Li, W. Zhu, Q. Li, Trichromatic dyes sensitized hkust-1 (MOF-199) as scavenger towards reactive blue 13 via visible-light photodegradation, *Inorg. Chem. Comm.* (2018)).

80. S. Dhaka, R. Kumar, A. Deep, M. B. Kurade, S.-W. Ji, B.-H. Jeon, Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments, *Coord. Chem. Rev.* 380 (2019) 330–352)

81. Sanjeev Gautama,* , Harshita Agrawala , Manisha Thakura , Ali Akbarib , Hemam Sharda c , Rajwant Kaura , MojtabaAminid, Metal oxides and Metal Organic Frameworks for the Photocatalytic Degradation: AReview Journal of Environmental Chemical Engineering (2020), doi: <https://doi.org/10.1016/j.jece.2020.103726>

82. Thin film photocatalysis for environmental remediation: A status review R.S. Pedanekar, S.K. Shaikh, K.Y. Rajpure* *Current Applied Physics* · May 2020 DOI: 10.1016/j.cap.2020.04.006

83. ELHAM FAKOORI1 , HASSAN KARAMI1,2,* , AZIZOLLAH NEZHADALI1 Synthesis and characterization of binary and ternary nanocomposites based on TiO₂, SiO₂ and ZnO with PVA based template-free gel combustion method *Materials Science-Poland*, 37(3), 2019, pp. 426-436 <http://www.materialsscience.pwr.wroc.pl/> DOI: 10.2478/msp-2019-0051)

84. Filofteia-Laura Toma,¹ Ghislaine Bertrand,² Didier Klein,² Cathy Meunier,³ and Sylvie Begin⁴ Development of Photocatalytic Active TiO₂ Surfaces by Thermal Spraying of Nanopowders Volume 2008, Article ID 384171, 8 pages doi:10.1155/2008/384171).

85. ARAI Y., TANAKA K., KHLAIFAT A.L., *J. Mol. Catal. A: Chem.*, 243 (2006), 85

86. BISWAS S., HOSSAIN M.F., TAKAHASHI T., KUBOTA Y., FUJISHIMA A., *Thin Solid Films*, 516 (2008), 7313.

87. HOUŠKOVÁ V., ŠTENGL V., BAKARDIEVA S., MURAFA N., *J. Phys. Chem. Solids*, 69 (2008), 1623.

88. LEE H.C., HWANG W.S., *Appl. Surf. Sci.*, 253 (2006), 1889.).

89. SERPONE N., MARUTHAMUTHU P., PICHAT P., PELIZZETTI E., HIDAKA H., *J. Photochem. Photobiol. A: Chem.*, 85 (1995), 247.)

90. ELHAM FAKOORI1 , HASSAN KARAMI1,2,* , AZIZOLLAH NEZHADALI1 Synthesis and characterization of binary and ternary nanocomposites based on TiO₂, SiO₂ and ZnO with PVA based template-free gel combustion method *Materials Science-Poland*, 37(3), 2019, pp. 426-436 <http://www.materialsscience.pwr.wroc.pl/> DOI: 10.2478/msp-2019-0051)

91. C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, Preparation of ZnO/Cu₂O compound photocatalyst and application in treating organic dyes, *J. Hazard. Mater.* 176 (2010) 807–813).

92. R. Daghrir, P. Drogui, D. Robert, Modified TiO₂ for environmental photocatalytic applications: a review, *Ind. Eng. Chem. Res.* 52 (2013) 3581

93. K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, *Water. Res* 88 (2016) 428– 448.)

94. P. Labhane, V. Huse, L. Patle, A. Chaudhari, G. Sonawane, Synthesis of Cu doped ZnO nanoparticles: crystallographic, optical, FTIR, morphological and photocatalytic study, *J. Chem. Eng. Mater. Sci.* 3 (2015) 39.)

95. K. Milenova, I. Stambolova, V. Blaskov, A. Elias, S. Vassilev, M. Shipochka, The effect of introducing copper dopant on the photocatalytic activity of ZnO nanoparticles, *J. Chem. Technol. Metall.* 48 (2013) 259–264).

96. C. Liu, L. Zhang, R. Liu, Z. Gao, X. Yang, Z. Tu, F. Yang, Z. Ye, L. Cui, C. Xu, et al., Hydrothermal synthesis of N-doped TiO₂ nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties, *J. Alloys Comp.* 656 (2016) 24

97. W.-K. Jo, S. Kumar, M. A. Isaacs, A. F. Lee, S. Karthikeyan, Cobalt promoted TiO₂/GO for the photocatalytic degradation of oxytetracycline and Congo Red, *Appl. Catal. B - Environ.* 201 (2017) 159–168.)

98. R. Atchudan, T. N. J. I. Edison, S. Perumal, D. Karthikeyan, Y. R. Lee, Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation, *J. Photochem. Photobiol. A-Chem.* 333 (2017) 92–104)

99. Jingwen Wang 1 , Takuya Hasegawa 1 , Yusuke Asakura 2 and Shu Yin 1,3, Recent Advances in Ternary Metal Oxides Modified by N Atom for Photocatalysis Catalysts 2022, 12, 1568. <https://doi.org/10.3390/catal12121568>)

100. Solís, R.R.; Bedia, J.; Rodríguez, J.J.; Belver, C. A review on alkaline earth metal titanates for applications in photocatalytic water purification. *Chem. Eng. J.* 2021, 409, 128110.

101. Yin, S. Creation of advanced optical responsive functionality of ceramics by green processes. *J. Ceram. Soc. Jpn.* 2015, 123, 823–834. [CrossRef]

102. Yin, S.; Asakura, Y. Recent research progress on mixed valence state tungsten based materials. *Tungsten* 2019, 1, 5–18. [CrossRef]

103. Yin, S.; Hasegawa, T. Morphology Control of Transition Metal Oxides by Liquid-Phase Process and Their Material Development. *KONA Powder Part. J.* 2022, 2023015. [CrossRef]

104. Xue, Y.; Yin, S. Element doping: A marvelous strategy for pioneering the smart applications of VO₂. *Nanoscale* 2022, 14, 11054–11097. [CrossRef] [PubMed]

105. Zhao, Z.; Fan, J.; Chang, H.; Asakura, Y.; Yin, S. Recent progress on mixed-anion type visible-light induced photocatalysts. *Sci. China Technol. Sci.* 2017, 60, 1447–1457. [CrossRef]

106. Li, H.; Yin, S.; Wang, Y.; Sato, T. Current progress on persistent fluorescence-assisted composite photocatalysts. *Funct. Mater. Lett.* 2013, 6, 1330005. [CrossRef])

107. Linsebigler, A.L.; Lu, G.; Yates Jr, J.T. Photocatalysis on TiO₂ surfaces: Principles, mechanisms, and selected results. *Chem. Rev.* 1995, 95, 735–758. [CrossRef]

108. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. *Nature* 1997, 388, 431–432. [CrossRef]

109. Wu, X.; Yin, S.; Dong, Q.; Liu, B.; Wang, Y.; Sekino, T.; Lee, S.W.; Sato, T. UV, visible and near-infrared lights induced NO_x destruction activity of (Yb, Er)-NaYF₄/C-TiO₂ composite. *Sci. Rep.* 2013, 3, 2918. [CrossRef]

110. Komatsuda, S.; Asakura, Y.; Vequizo, J.J.M.; Yamakata, A.; Yin, S. Enhanced photocatalytic NO_x decomposition of visible-light responsive F-TiO₂/(N, C)-TiO₂ by charge transfer between F-TiO₂ and (N, C)-TiO₂ through their doping levels. *Appl. Catal. B* 2018, 238, 358–364. [CrossRef]

111. Noda, C.; Asakura, Y.; Shiraki, K.; Yamakata, A.; Yin, S. Synthesis of three-component C₃N₄/rGO/C-TiO₂ photocatalyst with enhanced visible-light responsive photocatalytic deNO_x activity. *Chem. Eng. J.* 2020, 390, 124616. [CrossRef]

112. Gu, Z.; Cui, Z.; Wang, Z.; Qin, K.S.; Asakura, Y.; Hasegawa, T.; Tsukuda, S.; Hongo, K.; Maezono, R.; Yin, S. Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism. *Appl. Catal. B* 2020, 279, 119376. [CrossRef]

113. Jingwen Wang 1, Takuya Hasegawa 1, Yusuke Asakura 2 and Shu Yin 1,3,* Recent Advances in Ternary Metal Oxides Modified by N Atom for Photocatalysis Catalysts 2022, 12, 1568. <https://doi.org/10.3390/catal12121568>

114. Hoang Phuong Nguyen, Thi Minh Cao, Tien-Thanh Nguyen, Viet Van Pham, Improving photocatalytic oxidation of semiconductor (TiO₂, SnO₂, ZnO)/CNTs for NO_x removal Journal of Industrial and Engineering Chemistry, Volume 127, 2023, Pages 321-330, ISSN 1226-086X <https://doi.org/10.1016/j.jiec.2023.07.017>.

115. Sunil P. Lonkar, Vishnu V. Pillai, Saeed M. Alhassan, Three dimensional (3D) nanostructured assembly of MoS₂-WS₂/Graphene as high performance electrocatalysts, International Journal of Hydrogen Energy, Volume 45, Issue 17, 2020, Pages 10475-10485, ISSN 0360-3199, <https://doi.org/10.1016/j.ijhydene.2019.03.195>

116. Deborah L. Villaseñor-Basulto, Erick R. Bandala, Irving Ramirez, Oscar M. Rodriguez-Narvaez, Chapter 16 - Synthesis and photocatalytic applications of CuxO/ZnO in environmental remediation, Editor(s): Janardhan Reddy Koduru, Rama Rao Karri, Nabisab Mujawar Mubarak, Erick R. Bandala, In Micro and Nano Technologies, Sustainable Nanotechnology for Environmental Remediation, Elsevier, 2022, Pages 397-433, ISBN 9780128245477, <https://doi.org/10.1016/B978-0-12-824547-7.00026-6>

117. Wang, Wei 1 ; Lin, Lu 2 ; Yu, Dan 2 ; Liu, Baojiang 2 ; Study on the Photocatalytic Performance of BiVO₄/Bi₂WO₆/Multi-Walled Carbon Nanotube Nanocomposites in One-Pot Hydrothermal Process *Journal of Nanoscience and Nanotechnology*, Volume 18, Number 11, November 2018, pp. 7691-7702(12) **DOI:** <https://doi.org/10.1166/jnn.2018.15559>

118. **R. Priya and S. Kanmani** Solar photocatalytic generation of hydrogen from hydrogen sulphide using CdS-based photocatalysts Vol. 94, No. 1 (10 January 2008), pp. 102-104 (3 pages) <https://www.jstor.org/stable/24102035>

119. Jing-Jie Zhang, Pan Qi, Jie Li, Xiu-Cheng Zheng, Pu Liu, Xin-Xin Guan, Guang-Ping Zheng, Three-dimensional Fe₂O₃–TiO₂–graphene aerogel nanocomposites with enhanced adsorption and visible light-driven photocatalytic performance in the removal of RhB dyes, Journal of Industrial and Engineering Chemistry, Volume 61, 2018, Pages 407-415, ISSN 1226-086X, <https://doi.org/10.1016/j.jiec.2017.12.040>.

120. Cheng-Yu Lin^a, Chiao-Yi Teng^a, Tzung-Luen Li^a, Yuh-Lang Lee^a and Hsisheng Teng^{*ab} Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells[†]

121. P. Jayaram, T.P. Jaya, Smagul Zh. Karazhanov, P.P. Pradyumnan, Structural and Physical Property Analysis of ZnO–SnO₂–In₂O₃–Ga₂O₃ Quaternary Transparent Conducting Oxide System, Journal of Materials Science & Technology, Volume 29, Issue 5, 2013, Pages 419-422, ISSN 1005-0302, <https://doi.org/10.1016/j.jmst.2013.02.011>.

122. Jae-Jin Shim¹, Mostafa Saad Sayed Mohamed¹, Abdullah Al Mahmud¹ and Md. Mahmud Hasan. Shagar¹ 3D Core-Shell Heterostructures of WO₃/Bi₂MoO₆ and MoS₂/BiVO₄ for Efficient Photoelectrochemical Water Splitting **DOI** 10.1149/MA2022-02481874mtgab

123. A Comprehensive Review on Modification of Titanium Dioxide-Based Catalysts in Advanced Oxidation Processes for Water Treatment Dr. Fida Tanos, Prof. Antonio Razzouk, Dr. Geoffroy Lesage, Prof. Marc Cretin, Dr. Mikhael Bechelany First published: 21 November 2023 <https://doi.org/10.1002/cssc.202301139>

124. Yang Li, Xiaoli Zhang, Shaohong Jiang, Haitao Dai, Xiaowei Sun, Yongdan Li, Improved photoelectrochemical property of a nanocomposite NiO/CdS@ZnO photoanode for water splitting, Solar Energy Materials and Solar Cells, Volume 132, 2015, Pages 40-46, ISSN 0927-0248, <https://doi.org/10.1016/j.solmat.2014.08.015>.

125. Chockalingam Karunakaran, Pazhamalai Vinayagamoorthy, Superparamagnetic core/shell Fe₂O₃/ZnO nanosheets as photocatalyst cum bactericide, Catalysis Today, Volume 284, 2017, Pages 114-120, ISSN 0920-5861, <https://doi.org/10.1016/j.cattod.2016.11.022>.

126. Gaim YT, Tesfamariam GM, Nigussie GY, Ashebir ME. Synthesis, Characterization and Photocatalytic Activity of N-doped Cu₂O/ZnO Nanocomposite on Degradation of Methyl Red. *Journal of Composites Science*. 2019; 3(4):93. <https://doi.org/10.3390/jcs3040093>

127. MoS₂/WS₂/BN-Silver Thin-Film Hybrid Architectures Displaying Enhanced Fluorescence via Surface Plasmon Coupled Emission for Sensing Applications Pradyumna Mulpur , Sairam Yadavilli , Apparao M. Rao , Venkataramaniah Kamisetty , and Ramakrishna Podila

128. Yitao Zhao, Le Li, Yuanjie Zuo, Guangyu He, Qun Chen, Qi Meng, Haiqun Chen, Reduced graphene oxide supported ZnO/CdS heterojunction enhances photocatalytic removal efficiency of hexavalent chromium from aqueous solution, Chemosphere, Volume 286, Part 3, 2022, 131738, ISSN 0045-6535, <https://doi.org/10.1016/j.chemosphere.2021.131738>.