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Abstract:-

Fractional difference equations provide a powerful framework for modeling discrete dynamical

systems with memory and hereditary characteristics. On the other hand, fuzzy metric spaces
incorporate uncertainty and imprecision that naturally arises in control, engineering, population
models, and biological systems. Motivated by the necessity to combine memory with uncertainty
in a discrete environment, this paper investigates the existence and uniqueness of solutions for a
class of nonlinear fractional summation difference equations of finite delay in fuzzy metric
spaces. Using a fixed-point approach supported by the properties of fractional sum operators,
sufficient conditions are derived to guarantee unique mild solutions. An illustrative example is
provided to demonstrate the applicability of the developed theory.
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Introduction:-

Fractional calculus extends traditional differentiation and integration to non-integer orders,
enabling the modeling of processes with memory and hereditary properties. Its discrete
counterpart, fractional summation difference equations, plays a crucial role in describing
discrete-time systems such as control processes, image analysis, and biological dynamics
(16,3,21 ). When such systems incorporate finite delays, their analysis becomes more intricate
due to the interaction between memory effects and time delays, leading to nonlocal and complex
dynamic behavior (23,25).

In many real-world applications, uncertainties and vagueness are inherent in system parameters
or measurements. To address this, fuzzy metric spaces—introduced by Zadeh (1965) and
developed further by Rus (17) and Muresan (14)—provide a mathematical framework that
captures imprecision by associating degrees of closeness between elements. Integrating fractional
difference equations with fuzzy metric spaces allows the modeling of uncertain, memory-
dependent discrete systems with delays, which arise naturally in fields such as engineering,
biology, and control theory (1, 20).

This paper aims to establish the existence and uniqueness of mild solutions for nonlinear
fractional summation difference equations of finite delay within a fuzzy metric space. Using the
Banach fixed-point theorem and properties of fractional summation operators, sufficient
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conditions are derived that ensure the existence of unique mild solutions. Furthermore,
illustrative examples validate the theoretical results and highlight their applicability.

The study contributes to the growing theory of fractional discrete systems under uncertainty by
unifying fractional calculus, difference equations, and fuzzy analysis. The results not only extend
previous findings in Banach spaces but also lay a foundation for future work on impulsive,
stochastic, and hybrid fuzzy fractional systems.

Definitions and Preliminaries :-

We begin by recalling essential definitions in fuzzy metric spaces and fractional sum operators.
Definition 1 (Fuzzy Metric Space)

A triple (X, M,*) is called a fuzzy metric space where

e X isanonempty set
e *isacontinuous t-norm
e M:X XX X (0,) - [0,1] satisfying

M(x,y,t) >0

Mx,yt) =1 ox=y

M(x,y,t) = M(y,x,t)

M(x,z, t +s) = M(x,y,t) * M(y, z,5s)
M (x, y,*) is continuous

Ok wnPE

Definition 2 (Gamma Function)
I'a) = fooo eSslds, a>0
Definition 3 (Fractional Sum Operator)

For f:N — R, fractional sum of @« > 0 is

AT () = s Bk —j = DEVFG),  kEN

The fractional difference of order a € (0,1) is defined by
A% x(k) =A A1 x(k

These operators characterize systems whose evolution depends on present and weighted past
states
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Problem Formulation
Consider a non linear fractional summation difference equation with finite delay
A% x(k) = f(k,x(k),x(k—7)) , k€N
With initial delay conditions x(k) = ¢(k) , k € {—1,.....,0}
where
e O<a<l,
e 7 € N indicates the delay,
e f:N XX XX — Xisfuzzy bounded
Problem Solution:-
We assume the following.
(H1) There exists a metric d on X which induces the same topology as the fuzzy metric M
(H2) (Lipschitz) there are constants L; , L, = 0 such that for every k € N and all u, w,v,v" € X,
d(f(k,w,v), fk,u',v)) < Lid(wu) + Lyd(w,v).
SetL =1L, +L,.
(H3) The initial history ¢ is bounded Sup_, <, <d(¢(k), x) < .

Using the shift Fractional sum convention, a sequence x is a mild solution on [—t, N] iff
for k> 1

x(k) = 9(0) +A™ (B) (k) = ¢(0) + %Z}‘;&(k =N GG, x( — 1))
Thus solving the evolution is equivalent to finding a fixed point of the operator T defined below
Local existence & uniqueness on finite interval [—t, N]
Fix an arbitrary integer N > 1 work in the Banach Space
Cy ={x:{—1,—7+1,... N} - X} equipped with the sup metric induced by d:

l1x = ¥|lo» = maxd(x(k),y(k)). Define the operator T: Cy — Cy by
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(k) —1<k<o,
(Tx)(k) = o(

00+ [2o k=D FG,x(), XG-1), 1<k<N
Claim A - T maps Cy into itself.

This is immediate from the definition T assigns the given history for k < 0 and defines
values for k € {1,2, ... ... N} via a finite sum of elements in X. Boundedness follows from
continuity of f on bounded set and the finiteness of the sum

Claim B — T is a contraction on Cy provided a simple quantitative bound holds.

Forany x,y € Cy and 1 < k < N we estimate (using the lipschitz property H2)

d((Tx) (k). (Ty) (k))

k-1

- Z(k DG, EG =), Z(k DG YD YG =)

< T = UG x(), G = D), G = DGy, vG — )

<o 0= D LAY G) + Lad (e =D,y ~ 1)

L k a—1
< — —

Taking maximum over —t < k < N gives

L -
7. -7 <aNllx=yll , GN =+ k_ ma-t

If gN < 1 then T is a strict contraction onC . By the Banach fixed-point theorem there exists a
unique x™) € Cy such that Tx®) = x() By (MS) this fixed point is exactly the unique mild
solution of the problem on the interval [—t, N]

Thus for every N satisfying qN < 1 we obtain existence and uniqueness on the interval [—z, N]

Main Result:-

Let (X, M,*) be a complete fuzzy metric space and let d be a metric compatible with M.
Suppose f: N X X x X — X satisfies the Lipschitz condition with constants L4, L, and let
L =L;+ L, Fix 0 < a < 1 then there exist an integer N, = 1 such that if

L k a—1
@ m=1m <1,
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Then the problem A% x(k) = f(k,x(k),x(k— 1)) , k €N x(k) = ¢(k), k=—-1,..,0

has a unique mild solution x: zZ, — X In particular, by the stepwise extension described above
one obtains a unique global solution on N

Theorem 1 (Existence)
Assume:

M(f(k,u,v), f(k,u,v'),At) = M(u.u', t) * M(v, v, ut) , for some A, u € (0,1) then the
system admits at least one mild fuzzy solution.

Proof:
Using the fractional sum transform: x(k) = ¢(0) +A~ f(k —1,s(k — 1),x(k — 1 — 1)),

Define of operator T:X - X, (Tx)(k) = ¢(0) +A™ f(k—1,s(k —1),x(k — 1 —1)).

By applying fuzzy contractive property and completeness of fuzzy metric space, T maps a closed

ball into itself and is continuous. By Schaduer’s Fixed-Point Theorem, a fixed point exists =
solution exists.

Theorem 2 (Uniqueness)
If further 4 4+ u < 1 then the solution is unique.

Proof:

The condition implies T is a strict fuzzy contraction. Using Banach fixed-point theorem, the
fixed point must be unique.

Illustrative Examples
1) Consider A% x(k) = x(k) +3x(k—1),  $(0) = 1,¢(~1) = 0.
We use the shifted fractional sum convention (mild solution form)

27 g(k) = ;5T k=D (), k=1

1 -1
Fora = % A7 g(k) = _F(ll) kitk-N7Tg(, T (_ = V7.
2

The mild solution for our equation is
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x(k) = x(0) +A7Y2 2x(j) +3x( — 1)

So,foreachk > 1

1 — ~— 1 . 1 .
x() =1+ F3k=)72 Tx()+3xG - 1)

We compute iteratively, since x(k) on the right depends only on previously computed
values x(j) with j < k.

Fork =1,

AT F(1) == 1)73(0) = =1

1
So x(1) = 1+ 5= ~ 1.28209479177388

For k = 2,

1

AT @) = O + WD)

We computed £(0) = 3 and £(1) = 5x(1) +7x(0) ~ 0.97438072922027
Evaluating gives

x(2) ~ 1.74920659803646
For k = 3,

f(2) = %x(Z) + %x(l) ~ 1.74920659803646. then

x(3) =1+ %ﬁ 3)‘%f (0) + (2)‘%]‘ (D + (1)‘%f(0)> ~ 2.28614608731779

Fractional memory and delay amplify growth while preserving stability.
All assumptions from Theorem 1 to 2 are satisfied = unique fuzzy solution exists.

2) Consider the linear scalar fractional difference equation with finite delay = 1
A% x(k) = ax(k) + b(x — 1) + g(k), k €N

With initial history x(—1) = ¥, x(0) = ¢ constants a, b € R are known forcing g: N —
R we seek an explicit mild solution using discrete fractional convolution.
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Using fractional sum operator we have
x(k) = x(0) +A™¢ (ax(.) +b(.—-1)+g( (k) k>1

(a—1) _
Now the discrete fractional kernel h, (k) = K N Ca i) R |
I'(a) (k)T (a)

Sothat A% u(k) = 23 hy (k — Hu())
Therefore x(k) = €+ g hy (k — ) (ax() + bx(j — 1) + g())
Rearrange x(k) — 25 hy (k — D(ax() +bx(j — 1)) = €+ 25 he (k= Dg()
Convolution form and iteration / resolvent kernel
r(k) =80+ 2o he (k= j)(ar()) + br(j — 1)) k>0

With r(—=1) = 0 and &, o , the Kroneker delta then the mild solution can be written
formally as

x(k) = B2 r (k= D(EG0+ 1alo 80l —mg(m))
In the homogenous case g = 0, this reduces to a discrete convolution evolution
x(k) = (r*n)(k)

Where n contains initial data the resolvent kernel r(k) may be computed recursively and
for small k we can produce closed form values using gamma identities.

Applications:-
The fractional summation difference equations in fuzzy metric spaces are relevant to
many contemporary applied problems. Below we list detailed modeling sketches, explicit

equations showing where fractional summation/delay/fuzziness enters, and computational
implementation .

1) Population Dynamics with Uncertain Environment and Time-lagged
Interactions

Model idea: population at discrete times with reproduction depending on present and

population under environmental uncertainty

Model :- A% N(k) =N (k) (1 = =52+ 5(k)
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Where

e N(k) population at generation k,

e 7 intrinsic growth rate,

e K carrying capacity,

e 7T maturation delay,

e (k) fuzzy perturbation representing environmental uncertainty.

Implement fuzziness by treating initial N(k) for k € [—t, 0] as fuzzy numbers or replacing
additive perturbation n(k) with fuzzy-valued noise 7j(k)Work in a fuzzy metric space (F, M,*)
of fuzzy numbers with a suitable distance (e.g LP- type metric on alpha cut) and apply the
existence framework above.

Numerical method: apply Picard iteration with fractional kernel; simulate many alpha-cuts of
fuzzy initial profile to obtain band of possible solutions; aggregate via level sets.

2) Fuzzy Control Systems with Fractional Discrete Controllers

Model idea: digital controller uses past samples (finite delay) and fractional difference
dynamics to tune response; sensors and actuators have uncertain calibration -> fuzzy
state.

Control law sketch:

A% x(k) = Ax(k) + Bu(k — ) + v(k

u(k) = Ke(j/(k), r(k)

where ¥, ¥ are fuzzy measurements/noise, ¢ is a fuzzy error mapping, and K is gain. Stability
and controller design use fractional closed-loop resolvent and fuzzy-norm-based gains ensuring
contraction in fuzzy metric.

Implementation: discretize and implement fractional-sum via convolution with pre computed
kernel; tune K using robust/fuzzy optimization

Conclusion:-

In this paper, we established the existence and uniqueness of mild solutions for fractional
summation difference equations of finite delay in a fuzzy metric space. Using fixed-point theory
and fractional difference operators, we transformed the problem into a contraction mapping
framework ensuring a unique solution. Illustrative examples demonstrated the applicability of the
theoretical results. The study extends classical results on fractional difference equations to fuzzy
environments, incorporating uncertainty and delay. These findings provide a foundation for
future research on impulsive, stochastic, or hybrid fuzzy fractional systems with potential
applications in engineering, biology, and control theory.
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