

Weak Continuity Via Bioperation-Semiopen Sets

K. Jhansi rani, G. Shanmugam and N. Rajesh

ABSTRACT. In this paper, we introduce and study the weak form of $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous functions called weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous functions between bioperation-topological spaces.

1. INTRODUCTION

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, seperation axioms etc. by utilizing generalized open sets. Kasahara [1] defined the concept of an operation on topological spaces. Maki and Noiri [3] introduced the notion of $\tau_{[\gamma,\gamma']}$, which is the collection of all $[\gamma,\gamma']$ -open sets in a topological space (X,τ) . In this paper, we introduce and study the weak form of $[\gamma,\gamma']$ - $[\beta,\beta']$ -semicontinuous functions called weakly $[\gamma,\gamma']$ - $[\beta,\beta']$ -semicontinuous functions between bioperation-topological spaces.

2 PRELIMINARIES

The closure and the interior of a subset A of (X,τ) are denoted by Cl(A) and Int(A), respectively.

Definition 2.1 [1] Let (X, τ) be a topological space. An operation γ on the topology τ is function from τ on to power set $\mathsf{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of τ at V. It is denoted by $\gamma : \tau \to \mathsf{P}(X)$.

Definition 2.2 [3] A topological space (X, τ) equipped with two operations namely γ and γ' defined on τ is called a bioperation-topological space and it is denoted by $(X, \tau, \gamma, \gamma')$.

Definition 2.3 A subset A of a topological space (X,τ) is said to be $[\gamma,\gamma']$ -open set [3] if for each $x \in A$ there exist open neighbourhoods U and V of x such that $U^{\gamma} \cap V^{\gamma'} \subset A$. The complement of a $[\gamma,\gamma']$ -open set is called a $[\gamma,\gamma']$ -closed set. Also τ [$[\gamma,\gamma']$] denotes set of all $[\gamma,\gamma']$ -open sets in (X,τ) .

2000 Mathematics Subject Classification 54D05, 54C08, 54B05.

Xeywords and phrases [x x]- semiopen set weakly [x x]-semicontinue.

Keywords and phrases. $[\gamma, \gamma']$ - semiopen set, weakly $[\gamma, \gamma']$ -semicontinuous functions. K. JHANSI RANI, G. SHANMUGAM AND N. RAJESH

Definition 2.4. [3] For a subset A of (X,τ) , $\tau_{[\gamma,\gamma']} - Cl(A)$ denotes the intersection of all $[\gamma,\gamma']$ -closed sets containing A, that is, $\tau_{[\gamma,\gamma']} - Cl(A) = \bigcap \{F: A \subset F, X \setminus F \in \tau_{[\gamma,\gamma']}\}$.

Definition 2.5. Let A be any subset of X. The $\tau_{[\gamma,\gamma']}$ -Int(A) is defined as $\tau_{[\gamma,\gamma']}$ - $Int(A) = \bigcup \{U : U \text{ is a } [\gamma,\gamma'] \text{-open set and } U \subset A\}$.

Definition 2.6. A subset A of a topological space (X, τ) is said to be $[\gamma, \gamma']$ -semiopen [2] if $A \subset \tau$ $[\gamma, \gamma']$ - $Cl(\tau)$ - Int(A).

Theorem 2.7. A subset A of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is $[\gamma, \gamma']$ -semi open if, and only if for each $x \in X$ there exists a $[\gamma, \gamma']$ -semiopen set U such that $x \in U \subset A$.

Definition 2.8. [2] A function $f:(X,\tau,\gamma,\gamma') \to (Y,\sigma,\beta,\beta')$ is said to be $[\gamma,\gamma']$ - $[\beta,\beta']$ -semicontinuous if the inverse image of every $[\beta,\beta']$ -open set in (Y,σ,β,β') is a $[\gamma,\gamma']$ -semiopen set in (X,τ,γ,γ') .

3 WEAK BIOPERATION-SEMICONTINUOUS FUNCTIONS

In this section, we define weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous function in bioperation-topological space and study some of their properties and theorems on them.

Definition 3.1. A function $f:(X,\tau,\gamma,\gamma')\to (Y,\sigma,\beta,\beta')$ is said to be weakly $[\gamma,\gamma']$ - $[\beta,\beta']$ -semicontinuous if for each $x\in X$ and each $[\beta,\beta']$ -open set V of Y containing f(x), there exists a $[\gamma,\gamma']$ -semiopen set U containing x such that $f(U)\subset [\beta,\beta']$ -Cl(V).

Proposition 3.2. Every almost $[\gamma, \gamma']$ - $[\beta, \beta']$ -semi continuous function is weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous.

Proof. Let U be any $[\beta, \beta']$ -regular open subset in Y. Then, since f is almost $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous, $f^{-1}(U)$ is a $[\gamma, \gamma']$ -semiopen set in X. From the fact $U \subset [\beta, \beta']$ - $Int([\beta, \beta'] - Cl(U))$, it follows $f^{-1}(U) = [\gamma, \gamma'] - sInt(f^{-1}(U)) \subset [\gamma, \gamma'] - sInt(f^{-1}([\beta, \beta'] - Cl(U))) \subset [\gamma, \gamma'] - sInt(f^{-1}([\beta, \beta'] - Cl(U)))$. Thus, f is weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous.

The following example shows that the converse of Proposition 3.2 is not true, in general.

Example 3.3 Let $X = \{a,b,c\}$, $\tau = \{\emptyset,\{b\},\{c\},\{a,b\},\{b,c\},X\}$ and take the $\sigma = \{\emptyset,\{a\},\{b\},\{a,b\},\{b,c\},X\}$. Let $\gamma,\gamma':\tau \to \mathsf{P}(X)$ and $\beta,\beta':\sigma \to \mathsf{P}(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{b\}, \\ A \cup \{c\} & \text{if } A \neq \{b\}, \end{cases} = \begin{cases} A & \text{if } A = \{c\}, \\ A \cup \{b\} & \text{if } A \neq \{c\}, \end{cases}$$
$$A^{\beta} = \begin{cases} A & \text{if } A = \{a\}, \\ A \cup \{b\} & \text{if } A = \{b\}, \end{cases} \text{and } A^{\beta'} = \begin{cases} A & \text{if } A = \{b\}, \\ A \cup \{a\} & \text{if } A \neq \{b\}, \end{cases}$$

Then the identity function $f:(X,\tau,\gamma,\gamma')\to (Y,\sigma,\beta,\beta')$ is weak $[\gamma,\gamma']-[\beta,\beta']$ -semi continuous but not almost $[\gamma,\gamma']-[\beta,\beta']$ -semicontinuous.

Corollary 3.4. Every $[\gamma, \gamma']$ - $[\beta, \beta']$ -semi continuous function is weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous.

Theorem 3.5. For a function $f:(X,\tau,\gamma,\gamma') \to (Y,\sigma,\beta,\beta')$, the following properties are equivalent:

- (1). f is weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous;
- (2). $[\gamma, \gamma'] sCl(f^{-1}([\beta, \beta'] Int([\beta, \beta'] Cl(B)))) \subset f^{-1}([\beta, \beta'] Cl(B))$ for every subset B of Y;
- (3). $[\gamma, \gamma']$ $sCl(f^{-1}([\beta, \beta'] Int(F))) \subset f^{-1}(F)$ for every $[\beta, \beta']$ -regular closed set F of Y;
 - (4). $[\gamma, \gamma']$ $sCl(f^{-1}(V)) \subset f^{-1}([\beta, \beta'] Cl(V))$ for every $[\beta, \beta']$ -open set V of Y;
- (5). $f^{-1}(V) \subset [\gamma, \gamma'] sInt(f^{-1}([\beta, \beta'] Cl(V)))$ for every $[\beta, \beta']$ -open set V of Y. Proof. (1) \Rightarrow (2): Let B be any subset of Y. Suppose that $x \in X \setminus f^{-1}([\beta, \beta'] - Cl(B))$. Then $f(x) \in Y \setminus [\beta, \beta'] - Cl(B)$ and there exists a $[\beta, \beta']$ -open set V of Y containing f(x) such that $V \cap B = \emptyset$. Hence, $V \cap [\beta, \beta'] - Int([\beta, \beta'] - Cl(B)) = \emptyset$ and then $[\beta, \beta'] - Cl(V) \cap [\beta, \beta'] - Int([\beta, \beta'] - Cl(B)) = \emptyset$. By assumption, there exists a $[\gamma, \gamma']$ -semiopen set U containing x such that $f(U) \subset [\beta, \beta'] - Cl(V)$. Hence, we have $U \cap f^{-1}([\beta, \beta'] - Int([\beta, \beta'] - Cl(B))) = \emptyset$ and $x \in X \setminus [\gamma, \gamma'] - sCl(f^{-1}([\beta, \beta'] - Int([\beta, \beta'] - Cl(B)))$. Thus, we obtain $[\gamma, \gamma'] - sCl(f^{-1}([\beta, \beta'] - Int([\beta, \beta'] - Cl(B))) \subset f^{-1}([\beta, \beta'] - Cl(B))$.
- (2) \Rightarrow (3): Let F be a $[\beta, \beta']$ -regular closed subset of Y. Then $F = [\beta, \beta']$ - $Cl([\beta, \beta'] Int(F))$ and we have $[\gamma, \gamma'] sCl(f^{-1}([\beta, \beta'] Int(F))) = [\gamma, \gamma'] sCl(f^{-1}([\beta, \beta'] Int([\beta, \beta'] Int([\beta, \beta'] Int(F)))) \subset f^{-1}([\beta, \beta'] Cl([\beta, \beta'] Int(F))) = f^{-1}(F)$.

- (3) \Rightarrow (4): Let V be a $[\beta, \beta']$ -open subset of Y. Then $[\beta, \beta']$ -Cl(V) is $[\beta, \beta']$ -regular closed. Then we obtain $[\gamma, \gamma']$ - $sCl(f^{-1}(V)) \subset [\gamma, \gamma']$ - $sCl(f^{-1}([\beta, \beta']$ - $Int([\beta, \beta']$ - $Cl(V)))) \subset f^{-1}([\beta, \beta']$ -Cl(V)).
- (4) \Rightarrow (5): Let V be a $[\beta, \beta']$ -open subset of Y. Then $Y \setminus [\beta, \beta'] Cl(V)$ is $[\beta, \beta']$ -open and we have $[\gamma, \gamma'] sCl(f^{-1}(Y \setminus [\beta, \beta'] Cl(V))) \subset f^{-1}([\beta, \beta'] Cl(Y))$ and hence $X \setminus [\gamma, \gamma'] sInt(f^{-1}([\beta, \beta'] Cl(V))) \subset X \setminus f^{-1}([\beta, \beta'] Cl(V))$ $\subset X \setminus f^{-1}(V)$. There fore, we obtain $f^{-1}(V) \subset [\gamma, \gamma'] sInt(f^{-1}([\beta, \beta'] Cl(V)))$.
- (5) \Rightarrow (1): Let $x \in X$ and V be a $[\beta, \beta']$ -open set containing f(x). We have $x \in f^{-1}(V) \subset [\gamma, \gamma']$ -s $Int(f^{-1}([\beta, \beta'] Cl(V)))$. Put $U = [\gamma, \gamma']$ -s $Int(f^{-1}([\beta, \beta'] Cl(V)))$. Then U is a $[\gamma, \gamma']$ -semiopen set containing x and $f(U) \subset [\beta, \beta']$ -Cl(V). This shows that f is weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous.

Theorem 3.6. For a function $f:(X,\tau,\gamma,\gamma') \to (Y,\sigma,\beta,\beta')$, the following properties are equivalent:

- 1) f is weakly $[\gamma, \gamma'] [\beta, \beta']$ -semicontinuous.
- 2) $[\gamma, \gamma']$ - $sCl(f^{-1}([\beta, \beta'] Int(K))) \subset f^{-1}(K)$ for every $[\beta, \beta']$ -regular closed subset K of Y.
- 3) $[\gamma, \gamma']$ - $sCl(f^{-1}([\beta, \beta'] Int([\beta, \beta'] Cl(V)))) \subset f^{-1}([\beta, \beta'] Cl(V))$ for every $[\beta, \beta']$ -semi-preopen subset V of Y.
- 4) $[\gamma, \gamma']$ $sInt(f^{-1}([\beta, \beta'] Int([\beta, \beta'] Cl(U)))) \subset f^{-1}([\beta, \beta'] Cl(U))$ for every $[\beta, \beta']$ -semiopen subset U of Y.
- **Proof.** (1) \Rightarrow (2): Let K be any $[\beta, \beta']$ -regular clsoed set of Y. Then since $[\beta, \beta']$ -Int(K) is a $[\beta, \beta']$ -open set in Y, from Theorem 3.5 (4) and $K = [\beta, \beta'] Cl([\beta, \beta'] Int(K))$, we have $[\gamma, \gamma'] sCl(f^{-1}([\beta, \beta'] Int(K))) \subset f^{-1}([\beta, \beta'] Cl([\beta, \beta'] Int(K))) = f^{-1}(K)$. Thus $[\gamma, \gamma'] sCl(f^{-1}([\beta, \beta'] Int(K))) \subset f^{-1}(K)$.
- (2) \Rightarrow (3): Let V be any $[\beta, \beta']$ -semiopen set. Then $[\beta, \beta']$ - $Cl(V) = [\beta, \beta']$ - $Cl([\beta, \beta'] Int([\beta, \beta'] Cl(V)))$, so we know that $[\beta, \beta']$ -Cl(V) is $[\beta, \beta']$ -regular closed. By (2), $[\gamma, \gamma']$ - $sCl(f^{-1}([\beta, \beta'] Int([\beta, \beta'] Cl(V)))) \subset f^{-1}([\beta, \beta'] Cl(V))$.
 - (3) \Rightarrow (4): Since every $[\beta, \beta']$ -semiopen set is $[\beta, \beta']$ -semi-preopen, it is obvious.
- (4) \Rightarrow (1): Let V be any $[\beta, \beta']$ -open subset of Y. Then V is also a $[\beta, \beta']$ -semiopen set and so from (4), $[\gamma, \gamma']$ - $sCl(f^{-1}(V)) \subset [\gamma, \gamma']$ - $sCl(f^{-1}([\beta, \beta'] Int([\beta, \beta'] Cl(V)))) \subset f^{-1}([\beta, \beta'] Cl(V))$. Hence by Theorem 3.5 (4), f is weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous.

Theorem 3.7. For a function $f:(X,\tau,\gamma,\gamma') \to (Y,\sigma,\beta,\beta')$, the following properties are equivalent:

- 1) f is weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous;
- 2) $[\gamma, \gamma']$ $sCl(f^{-1}([\beta, \beta'] Int([\beta, \beta'] Cl(G)))) \subset f^{-1}([\beta, \beta'] Cl(G))$ for every $[\beta, \beta']$ -preopen set G of Y;
- 3) $[\gamma, \gamma'] sCl(f^{-1}(V)) \subset f^{-1}([\beta, \beta'] Cl(V))$ for every $[\beta, \beta']$ -preopen set V of Y;
- 4) $f^{-1}(V) \subset [\gamma, \gamma'] sInt(f^{-1}([\beta, \beta'] Cl(V)))$ for every $[\beta, \beta']$ -preopen set V of Y:
- 5) $[\gamma, \gamma']$ $sCl(f^{-1}([\beta, \beta'] Int(G))) \subset f^{-1}(G)$ for every $[\beta, \beta']$ -preclosed set G of Y.

Proof. (1) \Rightarrow (2): Let G be any $[\beta, \beta']$ -preopen subset of Y. Then $[\beta, \beta']$ - $Cl(G) = [\beta, \beta'] - Cl([\beta, \beta'] - Int([\beta, \beta'] - Cl(G)))$, so $[\beta, \beta'] - Cl(G)$ is $[\beta, \beta']$ -regular closed. From Theorem 3.6 (2), we have $[\gamma, \gamma'] - sCl(f^{-1}([\beta, \beta'] - Int([\beta, \beta'] - Cl(G)))) \subset f^{-1}([\beta, \beta'] - Cl(G))$.

- $(2) \Rightarrow (3)$: The proof is obvious.
- (3) \Rightarrow (4): Let V be any $[\beta, \beta']$ -preopen subset of Y. By (3), $[\beta, \beta']$ -preopenness of $Y \setminus [\beta, \beta'] Cl(V)$ we have $f^{-1}(V) \subset f^{-1}([\beta, \beta'] Int([\beta, \beta'] Cl(V))) = X \setminus f^{-1}([\beta, \beta'] Cl(Y)) \subset X \setminus [\gamma, \gamma'] sCl(f^{-1}(Y \setminus [\beta, \beta'] Cl(V))) = [\gamma, \gamma'] sInt(f^{-1}([\beta, \beta'] Cl(V)))$.
- (4) \Rightarrow (1): Let V be any $[\beta, \beta']$ -open set of Y. Then V is $[\beta, \beta']$ -preopen set in Y and by (4) $f^{-1}(V) \subset [\gamma, \gamma']$ - $sInt(f^{-1}([\beta, \beta'] Cl(V)))$. By Theorem 3.5 (5), f is weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ -semicontinuous.
 - (4) \Leftrightarrow (5): The proof is obvious.

Theorem 3.8. The set of all points x of X at which a function $f:(X,\tau,\gamma,\gamma') \to (Y,\sigma,\beta,\beta')$ is not weakly $[\gamma,\gamma'] - [\beta,\beta']$ -semicontinuous is identical with the union of all of the $[\gamma,\gamma'] - [\beta,\beta']$ -semifrontiers of the inverse images of the $[\beta,\beta']$ -closure of $[\beta,\beta']$ -open sets of Y containing f(x).

Proof. Let x be a point of X at which f(x) is not weakly $[\gamma, \gamma'] - [\beta, \beta']$ semicontinuous. Then, there exists a $[\beta, \beta']$ -open set V of Y containing f(x) such that $U \cap (X \setminus f^{-1}([\beta, \beta'] - Cl(V))) \neq \emptyset$ for every $[\gamma, \gamma']$ -semiopen set U of X containing x.

Then $x \in [\gamma, \gamma'] - sCl(X \setminus f^{-1}([\beta, \beta'] - Cl(V)))$. Simultaneously, since $x \in f^{-1}([\beta, \beta'] - Cl(V))$, we have $x \in [\gamma, \gamma'] - sCl(f^{-1}([\beta, \beta'] - Cl(V)))$ and hence

 $x \in [\gamma, \gamma']$ - $sFr(f^{-1}([\beta, \beta'] - Cl(V)))$. Conversely, if f is weakly $[\gamma, \gamma']$ - $[\beta, \beta']$ - semicontinuous at x, then for each $[\beta, \beta']$ - open set V of Y containing f(x), there exists a $[\gamma, \gamma']$ - semiopen set U containing x such that $f(U) \subset [\beta, \beta']$ - Cl(V) and hence $x \in U \subset f^{-1}([\beta, \beta'] - Cl(V))$. Therefore, we obtain that $x \in [\gamma, \gamma']$ - $sInt(f^{-1}([\beta, \beta'] - Cl(V)))$.

Now we characterize the set of points at which a function $f:(X,\tau,\gamma,\gamma')\to (Y,\sigma,\beta,\beta')$ is not weakly $[\gamma,\gamma']$ - $[\beta,\beta']$ -semicontinuous.

For a function $f:(X,\tau,\gamma,\gamma') \to (Y,\sigma,\beta,\beta')$, we define $D^{[\gamma,\gamma']-[\beta,\beta']}_{wsc}(f)$ as follows: $D^{[\gamma,\gamma']-[\beta,\beta']}_{wsc}(f) = \{x \in X : f \text{ is not weakly } [\gamma,\gamma']-[\beta,\beta'] \text{-semicontinuous at } x\}.$

Theorem 3.9 For a function $f:(X,\tau,\gamma,\gamma') \to (Y,\sigma,\beta,\beta')$, the following properties hold:

$$\begin{split} &D_{wsc}^{[\gamma,\gamma^{'}]-[\beta,\beta^{'}]}(f) \\ &= \bigcup_{B \in \mathsf{P}(Y)} \{ [\gamma,\gamma^{'}] - sCl(f^{-1}([\beta,\beta^{'}]-Int([\beta,\beta^{'}]-Cl(B)))) \setminus f^{-1}([\beta,\beta^{'}]-Cl(B)) \} \\ &= \bigcup_{F \in [\beta,\beta^{'}]-RC(Y,\sigma)} \{ [\gamma,\gamma^{'}] - sCl(f^{-1}([\beta,\beta^{'}]-Int(F))) \setminus f^{-1}(F) \} \\ &= \bigcup_{V \in \sigma} \{ [\gamma,\gamma^{'}] - sCl(f^{-1}(V)) \setminus f^{-1}([\beta,\beta^{'}]-Cl(V)) \} \\ &= \bigcup_{V \in \sigma} \{ f^{-1}(V) \setminus [\gamma,\gamma^{'}] - sInt(f^{-1}([\beta,\beta^{'}]-Cl(V))) \}. \end{split}$$

Proof. We shall show only the equality since the proof of the other are similar to the first. Let $x \in D_{wsc}^{[\gamma,\gamma']-[\beta,\beta']}(f)$. By Theorem 3.5, for every subset B of Y such that $x \in [\gamma,\gamma']-sCl(f^{-1}([\beta,\beta']-Int([\beta,\beta']-Cl(B))))$ and $x \notin f^{-1}([\beta,\beta']-Cl(B))$. Therefore, we have $x \in [\gamma,\gamma']-sCl(f^{-1}([\beta,\beta']-Int([\beta,\beta']-Cl(B))))\setminus f^{-1}([\beta,\beta']-Cl(B)))$. Conversely, let $x \in \bigcup_{B \in P(Y)} \{ [\gamma,\gamma']-sCl(f^{-1}([\beta,\beta']-Int([\beta,\beta']-Cl(B))))\setminus f^{-1}([\beta,\beta']-Cl(B)) \}$. Then $B \in P(Y)$ such that $x \in \{ [\gamma,\gamma']-sCl(f^{-1}([\beta,\beta']-Int([\beta,\beta']-Cl(B))))\setminus f^{-1}([\beta,\beta']-Cl(B)) \}$. By Theorem 3.5, we obtain $x \in D_{wsc}^{[\gamma,\gamma']-[\beta,\beta']}(f)$.

K. JHANSI RANI, G. SHANMUGAM AND N. RAJESH

Similarly, by Theorems 3.6 and 3.7, we obtain the following theorems

Theorem 3.10 For a function $f:(X,\tau,\gamma,\gamma')\to (Y,\sigma,\beta,\beta')$, the following properties hold:

$$\begin{split} &D_{wsc}^{[\gamma,\gamma^{'}]-[\beta,\beta^{'}]}(f) \\ &= \bigcup_{K \in [\beta,\beta^{'}]-RC(Y,\sigma)} \{ [\gamma,\gamma^{'}]-sCl(f^{-1}([\beta,\beta^{'}]-Int(K))) \setminus f^{-1}(K) \} \\ &= \bigcup_{V \in [\beta,\beta^{'}]-SPO(Y,\sigma)} \{ [\gamma,\gamma^{'}]-sCl(f^{-1}([\beta,\beta^{'}]-Int([\beta,\beta^{'}]-Cl(V)))) \setminus f^{-1}([\beta,\beta^{'}]-Cl(V)) \} \\ &= \bigcup_{U \in [\beta,\beta^{'}]-SO(Y,\sigma)} \{ [\gamma,\gamma^{'}]-sInt(f^{-1}([\beta,\beta^{'}]-Int([\beta,\beta^{'}]-Cl(U)))) \setminus f^{-1}([\beta,\beta^{'}]-Cl(U)) \}. \end{split}$$

Theorem 3.11 For a function $f:(X,\tau,\gamma,\gamma')\to (Y,\sigma,\beta,\beta')$, the following properties hold:

$$\begin{split} &D_{wsc}^{[\gamma,\gamma^{'}]-[\beta,\beta^{'}]}(f) \\ &= \bigcup_{G \in [\beta,\beta^{'}]-PO(Y,\sigma)} \{ [\gamma,\gamma^{'}]-sCl(f^{-1}([\beta,\beta^{'}]-Int([\beta,\beta^{'}]-Cl(G)))) \setminus f^{-1}([\beta,\beta^{'}]-Cl(G))) \} \\ &= \bigcup_{V \in [\beta,\beta^{'}]-PO(Y,\sigma)} \{ [\gamma,\gamma^{'}]-sCl(f^{-1}(V)) \setminus f^{-1}([\beta,\beta^{'}]-Cl(V)) \} \\ &= \bigcup_{V \in [\beta,\beta^{'}]-PO(Y,\sigma)} \{ f^{-1}(V) \setminus [\gamma,\gamma^{'}]-sInt(f^{-1}([\beta,\beta^{'}]-Cl(V))) \} \\ &= \bigcup_{G \in [\beta,\beta^{'}]-PC(Y,\sigma)} \{ [\gamma,\gamma^{'}]-sCl(f^{-1}([\beta,\beta^{'}]-Int(G))) \setminus f^{-1}(G) \}. \end{split}$$

REFERENCES

- [1] S.Kasahara, Operation-compact spaces, Math. Japonica 24 (1979), 97 -105
- [2] C. Carpintero, N. Rajesh and E. Rosas, On $[\gamma, \gamma']$ -semiopen, Boletin de Matematicas Colombia, 17(2), 125-136, (2010).
- [3] H. Maki and T. Noiri, Bioperations and some separation axioms, Scientiae Math. Japonicae, 53(1)(2001), 165-180.

82/1,ARULANANDAAMMAL NAGAR, THANJAVUR-613007, TAMILNADU, INDIA. *E-mail address*: drajasekarortho@gmail.com

DEPARTMENT OF MATHEMATICS, JEPPIAAR ENGINEERING COLLEGE, CHENNAI 600119, TAMILNADU, INDIA.

E-mail address: gsm.maths@gmail.com

DEPARTMENT OF MATHEMATICS, RAJAH SERFOJI GOVT. COLLEGE, THANJAVUR-613005, TAMILNADU, INDIA.

E-mail address: nrajesh topology@yahoo.co.in