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Abstract 

We consider in this paper the importance of the concepts of 

supersymmetry and superspace for the construction of 

supergravity  theories,  focusing the  attention  in particular  on  

D = 4, N = 1 supergravity. The Einstein theory of general 

relativity, considered supersymmetric, brings to supergravity and 

the superspace gives a geometrical meaning to the 

supersymmetry transformations. These technical tools are 

compact and formally very elegant, interesting technics of 

innovation for science. 
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1. Introduction 

From its discovery in 1974, supersymmetry has attracted 

the attention of physicists, mathematicians, scientists. The 

interest in this symmetry has well-founded reasons:  

 

a) it is a new peculiar symmetry, and the history of 

science shows that considerations of symmetry led to 

advances in fundamental and theoretical physics; 

 

b) being characterized by transforming bosons into 

fermions and vice versa, it represents quite different 

properties with respect to those resulting from the ordinary 

symmetries of high energy physics. 

 

The simplest theory is supersymmetry N = 1, where N 

corresponds to the number of generators of supersymmetry, 

and supergravity is the local version of the supersymmetric 

theory. For better understanding how supergravity theory 

fits so well in the phenomenology of elementary particles, 

we remember that the current phenomenology is described 

by the “standard model” [1-3]. 

The standard model is based on the gauge group SU(3) x 

SU(2) x U(1) for strong, weak and electromagnetic 

interactions. With this model it is correctly described the 

particle physics up to energy regions of around 100 GeV. 

The model is not based on an effective Lagrangian, such as 

the Fermi theory of weak interactions, but it is a 

renormalizable field theory. In “grand unified models” [4-7] 

the gauge group SU(3) x SU(2) x U(1) is unified in larger 

groups, such as SU(5) at this mass scale, SO(10) or larger 

groups, such as E6. 

Assuming the validity of the standard model up to a grand 

unification scale of 1015 GeV, the weak interaction scale of 

100 GeV is very small if compared with the grand 

unification scale and with the Planck scale (1019 GeV). If 

we consider these three scales as “input” parameters of the 

theory, the square mass of scalar particles in the Higgs 

sector should be chosen with accuracy of order of 10-34, if 

compared to the Planck mass. Theories in which there is an 

adjustment of such accuracy are also called “non-natural”. 

The way to make “natural” such a theory could be a 

symmetry implying that the small parameters of the theory 

were exactly zero and the current values of them are 

related to the breaking of such symmetry. Supersymmetry 

has just the feature of making “natural” the standard model.  

This kind of argumentation is analogous to the situation of 

spin 1 particles. For having fundamental spin 1 massless 

particles in a theory, they are usually introduced as 

particles associated to connections of a gauge symmetry, 

i.e. a symmetry maintaining them without mass; non-zero 

masses arise through a spontaneous breaking of the 

corresponding symmetry. 

If we want introduce supersymmetry in the standard model, 

next to each boson (fermion) of the model, a fermionic 

(bosonic) supersymmetric partner must be introduced, and 

for building acceptable models at phenomenological level, 

it needs an additional Higgs supermultiplet. 

Compared to other alternatives, the introduction of 

supersymmetry is a good method for making “natural” the 

standard model. In addition, if supersymmetry is a local 

symmetry, it necessarily includes the gravity and is called 

“supergravity”. 

2. Supergravity models 

The supergravity models have a higher predictive 

power than those based on global supersymmetry, because 

they allow to solve problems such as the “gauge hierarchy” 

of standard model. Supersymmetry cannot be applied to 
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particle physics if it is not broken. If not, fermions and 

bosons would have the same mass, and this is in contrast 

with the experimental data. If supersymmetry is 

spontaneously broken, it occurs a “mass splitting” among 

fermions and bosons of the same multiplet. 

One of the greatest obstacles encountered in the 

construction of grand unification theories with global 

supersymmetry was the fact that this mass splitting 

occurred in a wrong way. Even following the 

supersymmetry breaking, with resulting diversification of 

mass among fermions and bosons, the mass relation of 

supertrace of M2: 

 

0)12()1( 222  j
j

j mjMStr                      (1) 

valid in absence of matter, remained still valid (in Eq. (1) 

the sum is understood on all particles with a given spin and 

on all spin). This fact is in contrast with experimental 

results, because it implies that the scalar fields cannot 

increase in mass if fermions (quarks and leptons) remain 

light, as it should be. 

The situation changed when it was found that in 

theories with local supersymmetry, as supergravity, Eq. (1) 

becomes: 

 
22 mMStr  ,                                                        (2) 

with 2m  linear combination of the square mass of 

gravitino and of DD , with D  auxiliary field of vector 

multiplet. This discovery opened the way to application of 

N = 1 spontaneously broken supergravity for describing the 

phenomenology of particles at low energies. Scenarios 

with the following key features have been obtained:  

 

1) N = 1 supergravity is coupled to n scalar multiplets, 

divided into: 

 

a) a visible sector containing quarks, leptons and 

Higgs particles, together with their superpartners. These 

particles are assigned to the chiral representations of SU(3) 

x SU(2) x U(1), or grand unification groups G; 

 

b) an invisible sector whose particles are singlets 

under SU(3) x SU(2) x U(1) or G, and have no interaction 

with the visible sector, except for the gravitational one. 

 

2) The Kähler potential ),( zzG  is invariant with 

respect to the grand unification group G, “gauged” by a 

convenient vector multiplet, and it is chosen in such a way 

that the scalar fields of the invisible sector give a vacuum 

expectation value breaking supersymmetry [8]. 

 

3) The MS scale of supersymmetry breaking is 

intermediate between the scale of weak interactions MW = 

102 GeV and the Planck scale MP = 1019 GeV: 

 

GeVMMM PWS
1010 .                                  (3) 

 

4) The gravitino becomes massive “eating” the 

freedom degrees of goldstino and its mass m3/2 is of order 

of the weak scale MW. Inserting this information in Eq. (2), 

phenomenological plausible mass splitting are obtainable 

and this implies that the indirect effects of gravity cannot 

be discarded at these energies. With respect to the gauge 

hierarchy problem, the relation between the grand 

unification scale GeVM X
1510  and the weak scale MW is 

resolved by the supersymmetry breaking, which prohibits 

quadratic divergences. The super-Higgs phenomenon plays 

therefore a key role at global level, leading to 

supersymmetry breaking and to Eq. (2) [9,10].  

Although it is possible to build D = 4 supergravity 

models with many supersymmetry charges, from the 

phenomenological viewpoint the theory with one 

supersymmetric charge, i.e. N = 1 supergravity, presents 

very interesting features. The spectrum of the known 

fermions at low energies (the region of 100 GeV) implies 

that they are in complex representations of the gauge 

group; this fact is not compatible with the extended 

supersymmetry N > 1, which allows real representations of 

the particles with respect to the considered gauge groups. 

With N = 1 supersymmetry it is possible to work with 

complex chiral representations of particles. 

The supersymmetric theories are invariant with 

respect to a set of transformations, which change the spins 

of particles of half a unit, transforming bosons into 

fermions and vice versa. These transformations are 

generated by a Majorana spinor Q, which satisfies the 

following algebra: 

 

[Q, Pμ] = 0,                                                               (4) 

 

{ QQ, } = 
 P2 ,                                         (5) 

where P  is the traslation generator. 

If we implement this algebra with spacetime 

parameters, i.e. if supersymmetry is local, even translations 

are local. A local translations invariance is substantially 

equivalent to an invariance with respect to general 

coordinate transformations, at least in the second order 

formalism of gravity, when connections are expected just 

resolved in terms of metric. So a theory, which is invariant 

under local supersymmetry transformations, includes 

necessarily the gravity [11].  

Supersymmetry has been considered for many years 

as a very interesting mathematical structure from the point 
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of view of quantum field theory, but not at particle physics 

level. The supersymmetry algebra appears formally as a 

possible extension of Lorentz and Poincarè algebras, which 

constitute the basis of the relativity theory. 

The supersymmetry generators, acting on ordinary 

fields, create new fields. In the case of one spinorial 

generator, interesting situation by the phenomenological 

point of view, leptons and quarks are transformed into spin 

0 partners, photons and gluons into spin 1/2 partners. 

Supersymmetry binds spin 1 particles with spin 1/2 

particles, and spin 1/2 particles with spin 0 particles, but 

not directly the known particles. This was only an apparent 

problem of supersymmetry, because the existence of new 

particles, which are the superpartners of the ordinary ones, 

has been considered. 

The photon and the SU(3) color octet of gluons have 

spin 1/2 partners called respectively “photino” and 

“gluino”. “Wino” and “zino” are the spin 1/2 superpartners 

of W± and Z respectively. For leptons and quarks, the 

possibility, that does not require a great extension of the 

gauge group, consists in connecting them to new spin 0 

particles called “sleptons” and “squarks” [3,12].  

The theory is formulated by combining the 

gravitational multiplet, which contains the spin 2 graviton 

and its spinorial partner of spin 3/2 to massless 

supermultiplets of matter. They are of two types: 

 

i) the vectorial supermultiplets, which have an index 

in the adjoint representation of the gauge group; 

 

ii) the chiral supermultiplets, or “Wess-Zumino” 

supermultiplets, consisting of a spin 1/2 Majorana spinor 

and of a complex scalar.  

 

After the spontaneous breaking of gauge invariance, 

some of gauge vector multiplets acquire mass, while the 

corresponding Wess-Zumino fields are deleted. 

To distinguish the ordinary particles by their partners 

under symmetry, also the “R-parity” has been defined: 

 

a) Higgs and gauge bosons, the spin 1/2 leptons and 

quarks are “R-even”; 

 

b) their superpartners (photino, gluino, heavy 

fermions, sleptons and squarks) are “R-odd”. 

 

The R-even sector of a supersymmetric gauge theory 

is similar to an ordinary gauge theory, but with more 

“constraints” due to supersymmetry. The conservation of 

R-parity implies that ordinary particles cannot exchange R-

odd particles at lower order; spin 1/2 leptons and quarks 

exchange only gauge or Higgs bosons at classical level. R-

odd particles are produced in pairs. 

It is possible to define R not only as discrete, but also 

as continuous symmetry. The R-transformations act as 

phase transformations on spin 0 fields, as phase 

transformations or 5  on spin 1/2 fields. The R-invariance 

can also be helpful to limit a Lagrangian density beyond 

the constraints already imposed by supersymmetry, gauge 

invariance, conservation of baryon and lepton numbers. 

These restrictions may be necessary to have a spontaneous 

supersymmetry breaking. 

There is no conflict, but complementarity between 

supersymmetry and grand unification approaches. The 

grand unification aims to a unified description of 

electromagnetic, weak and strong interactions, while 

supersymmetry seems the natural structure for the 

introduction of gravity. 

The standard model which includes supergravity 

could appear apparently insignificant from a physical 

viewpoint, why not renormalizable. Field theories 

including gravity are not renormalizable and this is also the 

case of N = 1 classical supergravity. Initially it was hoped 

that the existence of supersymmetry would lead to 

cancellations of “infinites” of quantum theory; this is true, 

but only at the first perturbative orders. In general it is not 

possible to obtain a completely finite theory.  

The problem of renormalizability of supergravity 

disappears, if it is not considered as “fundamental theory”, 

but as “effective theory” of a superstring theory. By 

“effective theory” of a superstring theory we mean the 

theory obtainable integrating all massive modes of string 

theory in the path integral. Such a theory contains in 

general higher order derivatives, whose scale is fixed by 

the '  string constant. If we consider the terms which do 

not contain more than two derivatives of fields, it can be 

shown that the effective theories derived from superstring 

theories are the supergravity theories. 

In particular, N = 1, D = 4 supergravity theories can 

be considered as the compactification from 10 to 4 

dimensions of the heterotic string theory. 

Considering the supergravity theory under this aspect, 

the problem of renormalizability vanishes, because the 

fundamental theory is the string theory, which appears to 

be finite [13-15]. 

3. Pure D = 4, N = 1 Supergravity 

Gravity and the gauge theory of the Poincaré group 

ISO(1,3) in a 4-dimensional spacetime. The clarification of 

formal properties of gravity is vital for the formulation of 

its supersymmetric extension, i.e. supergravity. 

The action of Einstein-Cartan can be written as: 
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 
4

)(
M

abcd
dcab VVRA  ,                              (6) 

where M4 is a 4-dimensional Riemannian manifold, Rab is 

the 2-form of curvature: 

 
cba

c
abab dR                                            (7) 

and Va is the vierbein.  

The action (6) is equivalent to the action of gravity, 

written with tensor formalism. Indeed: 

 

xdVRVVR ij
ijabcd

dcab 4det4  .                 (8) 

where RRRij
ij  

 is the scalar of curvature and 

ggV detdet  .  

(Latin letters indicate flat indices, Greek letters 

indicate curved indices) 

Therefore, it is: 

 

xdgRVVR
MM

abcd
dcab 4

44

4)(    . (9) 

 

We have two gauge fields: the spin connection ab  

and the vierbein aV : 

 


 dxabab  ,                                                     (10) 

 


 dxVV aa  .                                                       (11) 

 

Working in the first order formalism, both gauge 

fields are treated as independent. The quantity { aV , ab } 

constitutes a multiplet in the adjoint representation of the 

Poincarè group. It is: 

 

a
a

ab
ab

A
A PxVJxTx )()()(  ,                        (12) 

where: 

 


 dxxx AA )()(                                               (13) 

is the gauge field of Poincarè group, Jab and Pa are the 

generators of Lorentz transformations and 4-dimensional 

translations respectively. The field strength associated to 
A  is defined as the following 2-form in the Poincarè Lie 

algebra-valued curvature: 

 

CBA
BC

AA CdR  
2

1
,                               (14) 

 

Dividing the A index as A = (ab, a), it is: 

 

cba
c

abab dR   ;                                      (15a) 

 
ba

b
aa VdVR      Va.                             (15b) 

 

The associated Bianchi identities are given by: 

 

 abR = 0,                                                              (16) 

 

 aR  + b
ab VR  = 0.                                            (17) 

 

Therefore the Lorentz algebra-valued curvature is the 

field strength of the spin connection, while the vector-

valued curvature, or torsion, is the field strength of the 

vierbein field. 

The Einstein-Cartan action is invariant under general 

coordinate transformations generated by Lie derivatives; 

on fact, since the function inside Eq. (6) is written using 

only exterior products and exterior derivatives, the 

invariance under diffeomorphisms is guaranteed by the 

general transformation law of forms under 

diffeomorphisms. 

The Einstein Lagrangian is invariant with respect to 

the Lorentz group SO(1,3) and to Lie derivatives; it is not 

invariant under pure gauge translations. Then a coordinate 

transformation is equivalent to a local gauge translation 

only if the torsion Ra = 0, i.e. in the second order 

formalism. 

By varying the action (6) with respect to the vierbein 

field, we obtain the Einstein equation of pure gravity: 

 

0
2

1
 RR a

b
al
bl  .                                                (18) 

 

By variation of ab  we obtain: 

 

00  c
abcd

dc RVR  .                                (19) 

 

It is possible to extend this formalism by coupling the 

Lagrangian describing the pure gravity with the Lagrangian 

describing the spin 3/2 Rarita-Schwinger field. Building 

indeed Lagrangians, which are invariant under 

transformations of local supersymmetry, the “gauging” of 

supersymmetry transformations necessarily involves the 

gauge field of supersymmetry: 

 





  QdxxQ )( ,                                (20) 

where )(x
  describes a massless spin 3/2 particle in 

four dimensions and Q  is the supersymmetry generator. 

The spin 3/2 field, partner of graviton, describes the 
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“gravitino”.  The  corresponding  interacting theory is the 

D = 4, N = 1supergravity.  

Considering the viewpoint of a purely spacetime 

observer, which ignores the superspace, it is possible to 

build an action describing the coupling of the spin 2 and 

spin 3/2 fields, which is invariant under convenient 

supersymmetry transformations. Let’s consider the 

Lagrangian of minimal coupling for the Rarita-Schwinger 

field. The free field Lagrangian in Minkowski space is: 

 

 R.S. = 
  5 ,                             (21) 

with   satisfying the Majorana condition Ct  0
. 

  contains a spin 3/2 part and a spin 1/2 part; the second 

one can be eliminated fixing the gauge condition 

0
 . 

The motion equation following by  R.S. is: 

 

05  
  ,                                          (22) 

which implies □   = 0, i.e.   describes a massless spin 

3/2 particle in Minkowski space. 

The complete action describing the coupling of the 

two fields is: 

 

 xdgRA
M

4

4

4  

 

a  54    xdV a 4
  .                 (23) 

 

The part of the Lagrangian related to gravitino can be 

written with forms too. It is: 

 


4M

abcd
dcab VVRA   

 

a 54    aV .                                   (24) 

 

The three independent fields appearing in Eq. (24) are 

Eqs (10), (11) and: 

 


 dxx)( .                                                     (25) 

 

By varying action with respect to ab
 ,  we obtain: 

 

002  c
abcd

dc RVR  ,                           (26) 

with cR  defined by: 

 

cR    cc i
V 

2
.                                     (27) 

 

By varying vierbein and   fields, it is respectively: 

 

dabcd
cab VR  542    0 ,           (28) 

 

a 58   aV 04 5  a
a R .             (29) 

 

The Lagrangian (24) is invariant under Lorentz local 

transformations and spacetime diffeomorphisms, and also 

with respect to new transformations containing an 

anticommutative parameter , called “supersymmetry 

transformations” [3]: 

 


aa iV  ,                                                    (30) 

 

    ,                                                          (31) 

 

 m
rsm

abrsab Vorderst  52)1(  

- 2  trs[a
rst  5 V b]

.                                     (32) 

4. Supergravity in superspace 

In order to give geometric meaning to the 

transformations of supersymmetry, the previous spacetime 

fields 
aV ,  , ab

 are interpreted as 1-forms in 

superspace. In this way, the transformations of 

supersymmetry can be interpreted as Lie derivatives in 

superspace. With the extension to superspace, the 1-forms 

( aV ,  ) can be considered as a single object Ea = 

( aV , ), said “supervielbein”. ( aV , ) form a basis in 

the cotangent plane in a point P of superspace. 

Supergravity can be “naturally” interpreted as a 

theory in superspace. The structure equations of 

superspace define the curvatures: 

 

 cba
c

abab dR    ab,                            (33) 

 

aR    aa i
V 

2
,                                    (34) 

 

   ,                                                         (35) 

where now ab , aV ,    are 1-forms in superspace, and 

abR , aR ,   are the corresponding curvatures. In a 

compact notation it is possible to write: 
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CBA
BC

AA CdR  
2

1
,                                (36) 

with: 

 

 ,, aabA RRR  .                                                   (37) 

 

The Bianchi identities associated to curvatures (33-35) 

are [3,8,16]: 

 

 0abR ,                                                               (38) 

 

 0  a
b

aba iVRR ,                            (39) 

 

 0
4

1
  ab

abR .                                         (40) 

5. Conclusions 

Supersymmetry is a unifying and very elegant concept, 

whose algebra is based on both commutators and 

anticommutators. In supersymmetric field theories the 

technical notion of superspace is very useful. Introducing a 

field of spin 3/2, the Einstein theory of general relativity 

becomes supersymmetric; this led to the birth of 

supergravity. The superspace allows to give a geometrical 

meaning to the supersymmetry transformations. 

Supergravity theories are the effective theories of 

superstring theories, which are a way for the unification of 

all forces of Nature. These technical tools offer 

compactness, formal elegance, development of new 

technics for innovation of science.  
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