

www.ijiset.com

A θ-closed Graph Theorem

A. T. Al-Ani

College of Science and Information Technology, Department Of Mathematics
Irbid National University, Irbid, Jordan

Abstract: We prove a θ -closed graph theorem using mH-closed spaces, where m is an infinite cardinal number.

1- Introduction and Preliminaries

In this paper m is infinite cardinal number. A topological space X is quasi mH-closed space iff every open cover (equivalently, regular open cover) of X with cardinality at most m has a finite subcollection the closures of its members cover X. . A Hausdorff space is H-closed iff it is closed in every Hausdorff space it can be embedded. A Hausdorff space is quasi mH-closed iff it is closed in every space with character m. A space is of character m iff every point has a local base of cardinality less than or equal to m.

Theorems 2.1 and 2.2 modify several characterizations of H-closed spaces in [2] and [4] to characterizations of mH-closed spaces.

A subset A of a space X is called regular open iff $A = \overline{A}^{o}$. A subset A is regular closed iff its complement is regular open (i.e $A = \overline{A}^{o}$).

A filterbase $\mathfrak{I}=\{F_{\lambda}:\lambda\in\Lambda\}$ in a space X is said to r-accumulate [4] to $x_{o}\in X$ iff for each $F_{\lambda}\in\mathfrak{I}$ and each open set (equivalently [3], each regular open set) V containing x_{o} we have $F_{\lambda}\cap \bar{V}\neq \varphi$.

A function $f: X \to Y$ has a strongly – closed graph if for each $(x, y) \in G(f)$, the graph of f, there exists open sets U in X and V in Y containing x and y respectively, such that $(U \times \overline{V}) \cap G(f) \neq \varphi$.

A function $f: X \to Y$ is called mwc-weakly continuous, mwc if for each $x \in X$ and for each open set V in Y such that the cardinality of $Y \setminus V$ is $\leq m$ there exists an open set W in X containing x such that $f(W) \subset \overline{V}^o$.

A multifunction α of a topological space Y is a set valued function such that $\alpha(x) \neq \phi$ for every x in X. A multifunction α is called closed graph iff its graph $\{(x,y):y \in \alpha(x)\}$ is closed in X×Y.

A subset A of a space X is called quasi mH-closed relative to X iff, for each cover of A by open subsets of X, of cardinality \leq m there is a finite subcollection the closures of its members cover A. If X is quasi mH-closed relative to X we say, simply, that X is quasi mH-closed. A Hausdorff quasi mH-closed space is mH-closed.

Theorem 3.2 characterizes quasi mH-closed set relative to a space X.

www.ijiset.com

A subset A of X is called θ -closed iff for every $x \in X \setminus A$ there is an open set V in X such that $x \in V$ and $\bar{V} \cap A = \varphi$.

A multifunction α of X into Y is called θ -closed graph iff its graph is θ -closed in X×Y. Theorem 3.5 characterizes quasi mH-closed spaces in terms of θ -closed graph multifunctions. Corollary 3.6 gives a new characterization of quasi H-closed spaces.

2- mH-closed space

In this section several characterizations of mH-closed spaces are given. They are modifications of characterizations of H-closed spaces appeared in [2] and [4].

Theorem 2.1 The following are equivalent about a Huasdorff space X.

- (i) X is mH-closed.
- (ii) Every filterbase of cardinality \leq m, of open sets has a cluster point.
- (iii) Every family of cardinality \leq m of closed sets of X whose intersection is empty has a finite subfamily with interiors has empty intersection.
- (iv) Every open cover of cardinality \leq m of X has a finite subfamily the closures of its members cover X.

Theorem 2.2 Let X be a Hausdorff space. Then the following are equivalent.

- (i) X is mH-closed.
- (ii) For each family of regular-closed sets $\mathfrak{I}=\{F\lambda:\lambda\in\Lambda\}$ of cardinality $\leq m$

such that $intersectF_{\lambda} = \varphi$, there exists a finite subfamily $\{F\lambda i: i=1,2,...,k\}$ such $intersectF_{\lambda i}^{\sigma} \circ = \varphi$.

(iii)Each filterbase $\mathfrak{I}=\{F_{\lambda}: \lambda \in \Lambda\}$ of cardinality \leq m r-accumulates to some point $x_0 \in X$.

Proof (i)⇒(ii) Follows from the previous theorem because ℑ is a family of closed sets with cardinality $\leq m$.

(ii) \Rightarrow (i) Let $\{V_{\lambda}: \lambda \in \Lambda\}$ be a cover of X by regular open sets in X of cardinality \leq m. Then $_{\lambda \in \Lambda} V_{\lambda} = X$. So that $_{\lambda \in \Lambda} V_{\lambda}^{c} = \varphi$ Since each V_{λ}^{c} is regular-closed by hypothesis there is a finite subfamily $\{V_{\lambda i}^{c}: i=1, 2, ..., k\}$ such that

$$\inf_{\substack{k \\ intersect V_{\lambda i}^{c^o} = \varphi.}} \operatorname{Intersect}_{\substack{i=1 \\ k}}^{c^o} = \varphi.$$
But $V_{\lambda i}^{c^o} = \bar{V}_{\lambda i}^{c}$, So

But
$$V_{\lambda i}^{c^{\circ}} = \bar{V}_{\lambda i}^{c}$$
, So

But $V_{\lambda i}^c = V_{\lambda i}^c$, So $intersect \bar{V}_{\lambda i}^c = \varphi$ Thus $\int_{i=1}^k \bar{V}_{\lambda_i} = X$ and so X is mH-closed.

www.ijiset.com

(i) \Rightarrow (iii) Suppose that there exists a filterbase $\mathfrak{I}=\{F_{\lambda}:\lambda\in\Lambda\}$ in X of cardinality \leq m that does not r-accumulate in X.

Then for each $x \in X$, \exists an open set V(x) containing x and $F_{\lambda(x)} \in \mathfrak{I}$ such that $F_{\lambda(x)} \cap \overline{V(x)} = \varphi$. Let $W_{\lambda}(x) = \int_{x \in X} V(x) \operatorname{such} \operatorname{that} F_{\lambda}(x) \cap \overline{V(x)} = \varphi$. Then

 $\{W_{\lambda(x)}: \lambda \in \Lambda\}$ is an open cover of X with cardinality $\leq m$. Since X is mH-closed there is a finite subfamily $\{W_{\lambda(x1)}, W_{\lambda(x2)}, ..., W_{\lambda(xk)}\}$ such that

$$\sum_{i=1}^{k} \overline{W_{\lambda(xi)}} = X.$$

Since \Im is a filterbase on X, there exists $F_{\lambda o} \in \Im$, such that

 $F_{\lambda o} \subset intersect F_{\lambda}(xi)$. Then $F_{\lambda o} \cap \overline{W_{\lambda}(xi)} \neq \varphi$ for some i. (Because $\overline{W_{\lambda}(xi)}$ is a cover of X). So that $F_{\lambda o} \cap \overline{V_{\lambda}(xi)} \neq \varphi$. Then

(Because $\overline{W_{\lambda}}(xi)$ is a cover of X). So that $F_{\lambda o} \cap \overline{V_{\lambda}}(xi) \neq \varphi$. Then $F_{\lambda o} \cap \overline{V_{\lambda}}(xi_o) \neq \varphi$ for some $i_o=1,2,...,k$. Consequently $F_{\lambda o} \cap \overline{V_{\lambda}}(xi_o) \neq \varphi$ which is a contradiction. Thus (i) \Rightarrow (iii).

(iii) \Rightarrow (ii) Let $\Im = \{F_{\lambda}: \lambda \in \Lambda\}$ be a family of cardinality \leq m of regular closed and suppose that each finite subcollection $\{F_{\lambda i}: i=1,2,...,k\}$ with

$$intersect F_{\lambda i} \varphi$$

We shall prove that $\inf_{\lambda \in \Lambda} \operatorname{rec} F_{\lambda} \varphi$.

 $\{F_{\lambda}^{o}\}$ is a filterbase of open sets of cardinality \leq m on X. Then by hypothesis there is a point $x_{o} \in X$ such that

$$F_{\lambda}^{o}\bar{V}\neq\varphi$$
,

for every $\lambda \in \Lambda$ and every open set V containing x_o .

Then

 $F_{\lambda} \cap \overline{V} \neq \varphi$ for each $\lambda \in \Lambda$,

because $F_{\lambda}^{o}F_{\lambda}$.

If $intersect F_{\lambda} = \varphi$ then $x_o \notin intersect F_{\lambda}$ So there is $\beta \in \Lambda$ such that $x_o \notin F_{\beta}$. So,

 F_{β}^{c} is regular open set containing x_{o} with $F_{\beta}^{\bar{c}} \cap F_{\beta}^{0} = \phi$.

This means that \Im does not r-accumulate to x_o . Contradiction

Theorem 2.3 Let Y be an mH-closed space. Then for every space X, every strongly-closed graph function $f: X \to Y$ is mwc.

Proof Let $x \in X$ and let V be a regular open set in Y such that V^c has cardinality $\leq m$ and $f(x) \in V$. Let $y \in V^c$. Then $(x, y) \notin G(f)$ so there exist open sets $U_y(x) \subset X$ and $V(y) \subset Y$ containing x and y respectively such that $[U_y(x) \times \overline{V(y)}] \cap G(f) = \emptyset$. Since Y is Hausdorff we can choose V(y) such that $f(x) \notin \overline{V(y)}$. Now $\{V(y): y \in V^c\}$ is an open cover of the regular closed set V^c with cardinality $\leq m$. And since V^c is mH-closed there is a finite subcollection $\{V(y_1), V(y_2), ..., V(y_k)\}$ such that $\{\overline{V(y_1)}, \overline{V(y_2)}, ..., \overline{V(y_k)}\}$ covers V^c . Let

 $W = \underset{i=1}{intersect} U_{yi}(x)$, then W is open in X such that f(W) is disjoint from $\sum_{i=1}^{k} \overline{V(y_i)}$ So, $f(W) \subset V \subset \overline{V}$. It follows that f is mwc at x.

www.ijiset.com

3- Quasi mH-closed space

Our main result here is Corollary 3.6 a characterizations of quasi mH-closed spaces in terms θ -closed graph multifunctions. Theorem 3.3 is a generalization of a result about compact spaces.

Theorem 3.1 A space X is quasi mH-closed iff for every regular open cover $\{V_{\lambda} : \lambda \in \Lambda\}$ of X, of cardinality $\leq m$, there is a finite subfamily

$$\{V_{\lambda_1}, V_{\lambda_2}, ..., V_{\lambda_k}\}$$
 such that $\sum_{i=1}^k \overline{V}_{\lambda_i}$ is a cover of X .

Proof If X is mH-closed then a regular open cover is an open cover and so it satisfies the condition in the statement of the theorem.

Conversely suppose that X satisfies the condition. Let $\{V_{\lambda} : \lambda \in \Lambda\}$ be an open cover of X with cardinality $\leq m$.

Then $\overline{V_{\lambda}}^o$ is regular open for every $\lambda \in \Lambda$ and $V_{\lambda} = V_{\lambda}^o \subset \overline{V_{\lambda}}^o$. So $\{\overline{V_{\lambda}}^o : \lambda \in \Lambda\}$ is a regular open cover of X satisfying the conditions. So it has a finite subfamily

$$\{\overline{V_{\lambda_1}}^o, \overline{V_{\lambda_2}}^o, ..., \overline{V_{\lambda_k}}^o\}$$
 such that $\sum_{i=1}^k \overline{V_{\lambda_i}}^o$ covers X. But $\overline{V_{\lambda_i}}^o \subset \overline{V_{\lambda_i}}$ for all $i=1,2,...,k$. So, $\sum_{i=1}^k \overline{V_{\lambda_i}}$ is a cover of X. Thus X is mH-closed.

Theorem 3.2 A subset K of a space X is quasi mH-closed relative to X if and only if for each filterbase Ω on X with cardinality at most m such that $F \cap C \neq \emptyset$ is satisfied for each $F \in \Omega$ and C regular closed set containing K we have $K \cap ad_{\theta} \Omega \neq \emptyset$.

Then $K \not\subset_{v \in \theta} \bar{V}^o$. But $\bar{V}^o \supset V$. So we get $K \not\subset_{v \in \theta} V$ Hence θ is not a cover of K. Contradiction. Thus K is quasi mH-closed relative to X.

Now, suppose that $K \cap \operatorname{ad}_{\theta} \Omega = \phi$ for some filterbase Ω of cardinality at most m. Then for each $x \in K$ there is V(x) open containing x and $F(x) \in \Omega$ with $\overline{V(x)} \cap F(x) = \varphi$. Let $W_x = \{V(y) : \overline{V(y)} \cap F(x) = \varphi\}$. Then $\{W_x : x \in K\}$ is an open cover of K with cardinality $\leq m$. Since K is quasi mH-closed there is a finite set $K^* \subset K$ with $K \subset \overline{W_x}$. Choose $F^* \in \Omega$ with $F \subset intersectF(x)$. Then $F \cap \overline{W_x} = \varphi$.

The following result is a modification of a result about compact spaces to m-compact spaces.

www.ijiset.com

Theorem 3.3 If X is m-compact T_1 space with character m then it has a base of cardinality $\leq m$

Proof For each $x \in X$ let β_x be a local base at x of cardinality $\leq m$. Let $B = \bigcup \{B_x : x \in X\}$. Then B is a base for X. We shall prove that B has cardinality $\leq m$. Let S be the collection of all minimal open covers (open covers having no strictly subcovers) of cardinality $\leq m$. Since X is

m-compact T_1 every member of S is a finite subcover. And |B| = |B| |S|. The rest of the proof is as in [1] (page 178, problem 120).

Theorem 3.4 A regular closed subset of a quasi mH-closed space is quasi mH-closed.

Proof Let A be a regular closed set then $A = \overline{U}$ for some open set U. Let $\{V_{\lambda} : \lambda \in \Lambda \}$ be a filterbase on A with cardinality $\leq m$. Then $\{V_{\lambda} \cap U : \lambda \in \Lambda \}$ is an open filterbase on X with cardinality $\leq m$. So it has a cluster point. This cluster point belongs to A. So A is mH-closed.

Theorem 3.5 A space X is quasi mH-closed iff every θ -closed graph multifunction of X to a space Y with character m maps regular closed sets in X onto θ -closed sets, in Y.

Proof Let X be a quasi mH-closed space. Y be a space of character m and α has a θ -closed graph multifunction of X to Y. Let K be a regular closed subset of X and $z \in \in cl_{\theta}(\alpha(K))$. Let Ω be a local base at z of cardinality at most m. Then $\alpha^{-1}(\Omega)$ is a filterbase on X with cardinality at most m such that $F \cap K \neq \emptyset$ for every $F \epsilon \alpha^{-1}(\Omega)$. And since K is regular closed it follows that it is quasi mH-closed.

Hence $K \cap ad_{\theta}\alpha^{-1}(\Omega) \neq \phi$. Thus for any $x \in K \cap ad_{\theta}\alpha^{-1}(\Omega)$ we have $\overline{V} \cap \alpha^{-1}(W) \neq \phi$ for every open set V containing x and $W \in \Omega$. Consequently $(\overline{V} \times W) \cap G(\alpha) \neq \phi$. So $(x, z) \in cl_{\theta}(G(\alpha)) = G(\alpha)$ and hence $z \in \alpha(x)$.

Conversely. Let Ω be a filterbase on X of cardinality at most m. Let $a \notin X$, and $Y=X \cup \{a\}$, Topologize Y by taking every point in X open in Y and a set containing a be open in Y iff it contains a member of Ω . Let α be the θ -closure of the identity function of X into Y. Then $a \in cl_{\theta}(\alpha(X))$. Since $\alpha(X)$ is regular closed it follows that there is x in X such that $a \in \alpha(x)$. This x must belong to $ad_{\theta}\Omega$. Thus X is quasi mH-closed.

The following result is a new characterization of quasi H-closed spaces.

Corollary 3.6 A space X is quasi H-closed space iff every θ -closed graph multifunction of X to a space Y, maps regular closed sets in X onto θ -closed sets in Y.

www.ijiset.com

References

- [1] A.V Arkhangel'skii and V.I. Ponomarev, Fundamentals of General Topology; Problems and Exercises, D. Reidel Publishing company, 1983.
- [2] N.Bourbaki, General Topology, Part1, Addison-Wesley, Reading, Mass. 1966.
- [3] J. Dugundiji, Topology Allyn and Bacon, Boston, Mass., 1966.
- [4] L.L. Herrington and P.E.Long, Characterizations of H-closed Spaces, Proceedings of the Amer. Math. Soc. 48(1975)489-