
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 2, February 2017

 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264

www.ijiset.com

The architectural design of distributed query optimization using
UML tools

Esiefarienrhe Michael Bukohwo1,Philemon Uten Emmoh2 and Djibo Idrissa3

1,2Department of Mathematics/Statistics/Computer Science,

University of Agriculture, Makurdi. Benue State, Nigeria.

3Department of Computer Science,
Federal Polytechnic, Bauchi, Bauchi State, Nigeria

Abstract
Distributed query processing select data from database
located at multiple sites in a network to achieve a single result.
Query optimization then find the best execution plan for the
given query which represents the execution strategy for the
query. The efficiency of processing strategies for queries in a
distributed database needs to be considered in system
performance. This paper used caching techniques to improve
query execution. Hill climbing and Ingres algorithm are used
to obtain query optimization and query decomposition
respectively. The paper only focused on the architectural
design of the system using UML tools namely conceptual and
Use case diagram for fast retrieval and high reuse of cached
queries to obtain optimal result. This was achieved by using
some parts of cached results helpful for retrieving other
queries (wider Queries) and combining many cached queries
while producing the result. These techniques will provide
efficient performance in optimization of query processing in
distributed databases environment.
Keywords: Query Optimization, caching, query execution, Hill
Climbing Algorithm, Ingres Algorithm.

1. Introduction

Given a query, there are many plans that a database
management system (DBMS) can take to process the query
and produce result. All these plans are equivalent in terms
of their final output but vary in their cost. Which of these
plans utilizes the least amount of time and cost is a issue to
be determined by the optimizer. Optimization problem is a
join ordering problem that has been proven to be NP-
complete meaning that no polynomial time algorithm
presently exist to find the optimal plan for large sizes of
queries within a feasible time [1],[2]. An optimal plan is
the execution sequence that produces the least cost in
terms of time and memory utilization. The cost difference
between two alternatives (plans) can be quite enormous.
Distributed query processing is the process of selecting
data from database located at multiple sites in a network
while distributed processing performs computations on
multiple CPUs to achieve a single result. Any statement in
a data manipulation language that references tables at sites
other than the site the application program is submitted for

compilation is called distributed query. The goal of query
optimization is to find an execution strategy for the
query that is close to optimal. An execution strategy for a
distributed query can be described with relational algebraic
operations and communication primitives (send/receive
operations) for transferring data between sites [3]. Query
optimization is very difficult task in a distributed
client/server environment as data location becomes a major
factor [4]. In order to optimize queries accurately,
sufficient information must be available to determine
which data access techniques are most effective. Query
processing is observed to be more difficult in distributed
environment than in centralized environment due to: Large
number of parameters that affect the performance of
distributed queries, relations involved in distributed query
may be fragmented and/or replicated and with many sites
to access, query response time may invariably become
high. The performance of distributed database system
(DDBS) is dependent on the ability of the query
optimization algorithm to derive efficient query processing
strategies, while distributed database management system
(DDBMS) algorithm attempts to reduce the quantity of
data transferred. The act of minimizing the quantity of data
transferred is a desirable optimization criterion, since more
data transported across telecommunication networks
requires more time and labor. Query optimization is a
major aspect of query processing and it is the process of
finding the best execution plan for a given query which
represents the execution strategy for the query. This query
execution plan (QEP) minimizes the objective cost
function. The main objective of the query optimization is
to decide the most efficient query execution plan which has
minimum execution cost, among many possible plans by
determining execution sequential order of relational
operators. Query Optimization in distributed databases is a
very difficult task due to number of factors such as data
allocation, communication channel’s speed, memory
availability, database size , storage of intermediate result,
pipelining and size of data transmission [5],[6]. In a
distributed query processing, first of all, initial query is
decomposed into fragment queries which operate on
fragments rather than on global relation (data

29

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 2, February 2017

 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264

www.ijiset.com

localization).Then in the second phase, joins/semi joins are
applied to reduce the size of data that has to be sent across
the network to different sites. In the final phase all the
processed files are sent to assembly site for generation of
final output. A Query Optimizer is used to generate QEP
which represents an execution strategy of the query with
minimum cost [6],[7].The performance of distributed
query depends upon the query optimizers ability to obtain
efficient strategies of processed query.
A distributed database is more popular because it improves
system performance, reliability, availability and modularity
in distributed system. The data distribution problem and
query processing are the critical issues in distributed
database. Database system performance effectiveness
depends on join operator. The allocation of operations or
sub queries involved in a particular query to the various
sites of a network is one of the important components of
distributed query processing and query optimization. The
query is broken into various sub operations like selection,
projections join and semi join and these operations
performed at many different sites of the network in
different sequences. Order sequence problem (OSP) and
Operation allocation problem (OAP) are the two
components of query optimization. OSP requires the
optimal sequence of operations for example Join order
sequence while OAP requires optimal placement of these
operations to different site [8].
This paper therefore seeks to provide the design of a robust
query optimization system using UML tools that can easily
serve as input to developing the optimization software.
The rest of the work is organized as follows: Section two
gives a brief background of the research related to this
work while section three gives the methods and models
used. Section four shows the implementation using the
conceptual diagram and the Use case diagram while
section five concludes the paper and gives an insight into
future work in this research.

2. Background

A cost model was developed by [9] which consist of the
following components:
1. Secondary storage cost - This is the cost of searching for
reading and writing data blocks on secondary storage).
2. Memory storage cost: This is the cost pertaining to the
number of memory buffers needed during query execution.
3. Computation cost - This the cost of performing in
memory operations on the data buffers during query
optimization.
4. Communication cost - This is the cost of transmitting the
query and its results from the database site to the site or
terminal where the query originated.

In distributed database systems there are three processes by
which data is distributed among various sites, these are:
fragmentation, allocation, and replication. Fragmentation
process requires empirical knowledge of data access and
query frequencies. Authors in [10] had proposed a
horizontal fragmentation technique that is capable of
taking proper fragmentation decision at the initial stage by
using the knowledge gathered during requirement analysis
phase without the help of empirical data about query
execution. It allocates the fragments properly among the
sites of DDBMS.
Authors in [11] worked on analysis of joins and semi joins
in a distributed database query. Their focus was on
computing and analyzing the performance of joins and
semi joins in distributed database system. They explained
various metrics that should be considered when analyzing
performance of join and semi join in distributed database
system namely Query Cost, Memory used, CPU Cost,
Input Output Cost, Sort Operations, Data Transmission,
Total Time and Response Time.
From their study, they concluded that data transmission in
a distributed query using semi-join is always lesser than the
data transmitted in distributed query using joins operation
however data accessed using semi join may be larger than
join.
Gregory in [7] developed a Genetic algorithm (GA) for
optimizing queries and its performance and compared it
with other alternative random optimization techniques like
random search, multistart etc. All their tables were fully
reduced in a tree query by optimizing a semijoin using this
GA. For this problem, evaluation of the fitness function is
a costly task. The GA proposed for this uses a tree-
structured data model with customized crossover and
mutation operators that avoid the need for full reevaluation
of the fitness function for new solutions. To meet the real
time nature of query optimization task, the GA prosed here
uses a local search phase to provide the required real-time
performance. Their GA is robust, performs well at the
beginning of a search, overcomes the problem of
premature convergence and makes persistent progress to
better solutions.

3. Methods

This work combines the Ingres and Hill climbing
algorithms to develop a Distributed Query Decomposition
and Optimization algorithm. The Ingres algorithm will be
used for distributed query decomposition while the Hill
Climbing algorithm will be used for query optimization.

30

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 2, February 2017

 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264

www.ijiset.com

4. Implementation

In Figure 1, the user is meant to input the details of the
church members at the distributed church database system.
The church application has will have two pages; the
normal query result page and optimization query result
page where the query will be carried out. At the first stage,
the same number of members is entered in both the normal
result query page and the optimization result query page
i.e. when 35 members were entered in both query result
pages, a query is run in both the normal and the
optimization result page while the time taken by each page
will be recorded. At this stage, the time recorded in normal
result query page at when members are 35 is < (less than)
the time recorded in optimization query result page at 35
members. At the second stage, we rerun the query, the time
recorded in normal result page still at when members are
35 is > (greater than) the optimization query result pages.
We continued to rerun the query until infinity (nth stage),
we will therefore discovered that the time recorded in the

normal result is highly > (greater than) the time recorded in
the optimization query result. The intermediate result
proved that the optimization result is faster and better than
the normal result and the result will be returned to the user
issuing the query command as shown in figure 3.2 above.
If more members were entered, and the same process is
taken, the normal query result page will always be < (less
than) the optimization query result page. As the query is
rerun in the second stage, the reverse is the case i.e. the
time taken to run the normal query result page will be
higher than the time taken to run the optimization query
result page. Here, running the optimization query results
gives us the best and faster results than the normal query
results.

Figure 2 show the user input the query to the query
interface which handles both the normal query and the
optimization query of the designed system. Relational
algebra expression here expresses a language that is being
used to explain basic relational operations and its
principles. The relations are stored in a database and the
results from a database can be obtained by using database
queries. The query optimizer then generates one or more
query plans for each query, each of which may be a
mechanism used to run a query. The query execution plan
is being considered here as an ordered set of steps used to
access data in the distributed church database. When being
considered, the execution plan query engine will do a scan
over the primary key index on the distributed church
database and a matching seek through the primary key
index on the distributed church database to find a matching
rows whenever a query command is issued. And the final
result of the query is given to the user who input the query
and the optimization result is produced as fast as possible
as the result while the normal result is ignored. After the
query interface, the query optimizer analysis both the
normal result and the optimization result while taking the
optimization result and passed it to the next stage of the
query to give a better result to the user.

Fig. 1 Use case for system query process.

User

Input
Church
Members

Optimization
query page

Time
recorded >
Normal
query

Time
recorded is <
Normal query
result

Time recorded
is highly <
Normal query
result

Returning
results to
the user

Normal
query
page

Time
recorded <
Optimization
query

Time recorded
is >
optimization
query result

Time recorded
is highly >
Optimization
query result

Run query

Run query

Rerun query

Rerun query

Rerun query

Rerun query

1st Stage

2nd Stage

nth Stage

Fig. 2 Conceptual model of the system.

31

http://www.ijiset.com/

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 2, February 2017

 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264

www.ijiset.com

5. Conclusions

Most database application systems grow slower in
processing over time, this is due to several reasons which
includes; macro query composition and data redundancy
which is a condition created within a database or data
storage technology in which the same piece of data is held
in two separate places. This can mean two different fields
within. By decomposing and optimizing distributed queries
these problems are a single database, or two different spots
in multiple software environments or platforms eliminated
thereby achieving a better performance.
The optimization results in the distributed church database
system are better than the normal results. This is because
during the process of the query decomposition and
optimization algorithm, the time recorded when a record is
queried in optimization result page is always less than the
time recorded during the normal result page. Here we
therefore believed that the optimization results are better
and faster than the normal results. Our results here clearly
have shown the effect of optimization on CPU processing
time across distributed database systems.

3. Future Work

The design done will be implemented using the ingress and
hill climbing algorithm in future. This two algorithms will
not only compressed the data for efficiency but will
improve multi-source data query performance through
optimization technique.

References
[1] W. Scheufele, G. Moerkotte, and S. A. Constructing
optimal bushy processing trees for join queries is np-hard
(extended abstract). Technical report, Universitat,
Mannheim, 1996.
[2] R. Taylor. Query Optimization Database Systems. Master
Thesis, Computer Science Department, University of Oxford,
2010. Available at:
http://www.cs.ox.ac.uk/people/dan.olteanu/theses/Robert.Taylor.pdf
[3] M. T. Oszu and P. Valduriez. Distributed and Parallel
Database Systems in Alaa Aljanaby, Emad Abuelrub and
Mohammed Odeh, IAJIT, Vol. 2 No. 1. Pp. 48-7.Jan.2005.
[4] B. M. Alom, F. Henskens and M. Hannaford, Query
Processing and Optimization in Distributed Database Systems,
International Journal of Computer Science and Network Security,
9(9), 143- 152. (2009).
[5] M.O. Tamer and P. Valduriez, Principles of Distributed
Database Systems, Third Edition,Springer,2011.
[6]M. P. Tiwari and V. S. Chande, Query Optimization
Strategies in Distributed Databases, International Journal of
Advances in Engineering Sciences Vol.3 (3), July, 2013.
[7] M. Gregory, “Genetic Algorithm Optimization of Distributed

Database Queries”, IEEE, 1998.
[8] A. Aljanaby, E. Abuelrub and O. Mohammed, A Survey of
Distributed Query Optimization, The International Arab Journal
of Information Technology, Vol. 2, No. 1, January 2005.
[9] R. Elmasri and S.B. Navathe. Fundamentals of
Database Systems, Reading, MA, Addison-Wesley, 2000
[10] S. I. Khan and A. S. M. LatifulHoque, A New Technique
for Database Fragmentation in Distributed Systems, IJCA Vol. 5.
(2010).
[11] G. Singh and V. Rajinder, Analysis of Joins and Semi Joins
in a Distributed Database Queries, International Journal of
Computer Applications 49(16):14-18, July 2012.

32

http://www.ijiset.com/
http://www.cs.ox.ac.uk/people/dan.olteanu/theses/Robert.Taylor.pdf

