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Abstract 

The contribution of this research is in suggesting a procedure that 
establishes the optimal compensator corner frequencies and in 
this way bringing a control system to its best mode of operation. 
The design of a set-up for compensating a feedback control 
system is optimized to obtain the best performance that can be 
offered by the compensating device. The paper also proposes an 
analysis by the method of the Advanced D-partitioning, to 
examine extensively the effects of the parameters variation on 
the system’s stability before and after the applied optimal 
compensation.  
Keywords: Compensation, Corner frequencies, Crossover 
frequencies, Optimization, Advanced D-partitioning. 

1. Introduction 

Compensation networks are considered as the simplest 
types of controllers that can be applied to improve the 
system’s degree of stability and performance. The design 
of phase-lag or phase-lead compensation networks can be 
optimized with intend to obtain their best operation. In the 
design process, it is essential to choose appropriately the 
compensator’s corner frequencies ωc1 and ωc2 [1]. 
 
The existing design practice is to establish the limitations 
of the compensator’s corner frequencies and to choose a 
value within these limits. These limitations are enforced 
mainly by the corner frequencies of the original plant 
open-loop transfer function, as well as some practical 
considerations for the physical realization of the 
compensator. By using this practice, the best compensation 
performance is difficult to predict. 
 
The main contribution of this research is suggesting an 
optimization of the compensator’s corner frequencies for 
obtaining the best system performance. The ITAE 
performance criterion is considered as a decisive factor, 
for the optimization strategy of compensator design. 
 
Another contribution of this paper is analyzing the system 
with the aid of the Advanced D-partitioning method before 
and after the compensation. This will illustrate the effects 
of the parameters variation on system’s performance. It 
defines graphically regions of stability in the space of the 
system’s parameters displaying the effects of the 
compensation.   
 

The amplitude and phase characteristics of linear systems 
are uniquely related according to the Bode’s Theorems [2]. 
A specified slope of the amplitude-frequency curve L(ω) 
over a certain frequency interval, specifies and determines 
the corresponding phase-frequency characteristic ϕ(ω) 
over that same frequency interval.  
 
Furthermore, the Bode’s theorems state that the slope at 
the crossover frequency ωc, where the L(ω) crosses the 
0db line, is weighted more heavily towards determining 
system stability than the slopes more remote from this 
frequency. The crossover frequency ωc is one of the two 
points that is checked to determine the degree of stability 
when using Bode diagrams. Specifically, the phase shift is 
measured at ωc in order to determine the phase margin. A 
feedback control system whose slope at crossover ωc is 
−20db/decade and whose other slope sections are 
relatively far away from ωc implies ideally a phase shift of 
−90° in the vicinity of crossover ωc and a corresponding 
phase margin of about 90°. That certainly implies a best 
case of a stable system. A slope at ωc is −40db/decade, 
implies a phase shift around −180° and a corresponding 
phase margin of about 0°. This value of phase margin is 
related to a marginally stable system  [2], [3]. 
 
In this research, an innovative procedure is suggested that 
can optimize the choice of the series phase-lead 
compensator corner frequencies. Identical procedure can 
be applied for the case of phase-lag compensation. 

2. Performance of the Original System  

A case study of a unity feedback control system is 
suggested. The open-loop transfer function of the system is 
of Type 1 and is presented as: 
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In accordance to the Bode stability criterion, the phase 
margin of the closed-loop system can be determined by 
plotting the Bode diagrams of the open-loop system Go(s), 
applying the following code:  
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Fig. 1 Bode diagrams of the original open-loop system 

 

As seen from Figure 1, the phase margin of the closed-
loop system is Pm = 7.73°, implying a relatively low 
degree of stability. The crossover frequency is ωc = 84.5 
rad/sec, which is higher than the corner frequency ωo1 = 
50 rad/sec and therefore at a slope of −40db/decade. 
Although the system is stable, its performance is quite 
poor. The evaluation of the closed loop system is achieved 
by the code: 

 

 
 

 

 

 

From the evaluation, it is seen that the relative damping 
ratio of the closed loop system is ζ = 0.0599 and natural 
frequency of oscillation is ωn = 86.7 rad/sec.  

Control systems usually require performance criteria that 
consider simultaneously the response error e(t)  and the 
time  t  at which it occurs. A very useful criterion is the 
Integral of Time multiplied by the Absolute value of Error 
(ITAE). If a system is higher than the second order, a pair 
of dominant poles can represent the system dynamics. 
Then, ζ and ωn   can still be used to indicate the location of 
these poles and the damping ratio is referred as the relative 
damping ratio of the system. Meeting the ITAE criterion, 

the following objectives should be targeted in the 
optimization design [4], [5]: 
  

ζ = 0.707                                                            (2) 
PMO ≤  4%                                                       (3) 
 ts / tm  ≤  2.5                                               (4) 
 

The poor step response of the discussed closed-loop 
original system is shown in Figure 2 and is obtained by the 
following code: 
 

 

  

 
Fig. 2 Step response of the original closed-loop system 

 

Considering the obtained results, the settling time ts(1%), 
the time to maximum overshoot tm  and percent maximum 
overshoot PMO [4], [5] are obtained as follows: 

sec886.0
7.860599.0

6.46.4
%)1( =

×
==

n
st ξω

                  (5)     

sec0363.0
0599.017.861 22

=
−

=
−

=
π

ξω

π

n
mt   (6) 

   %52.59100 )21( == −− ξπξePMO                          (7) 

   41.24=
mt
st                                                                  (8) 

In comparison with the ITAE objectives, demonstrated 
with equations (3) and (4), the PMO = 59.52%, as well as 
the ratio ts / tm = 24.41 are considerably higher, which is 
another proof of the poor system performance. 

>> Go=tf([0 180],[0.0001 0.025 1 0]) 
>> margin(Go) 

 

>> Gofb=feedback(Go,1) 
>> damp(Gofb) 
        Eigenvalue                     Damping     Freq. (rad/s)                            
 -5.19e+000 + 8.65e+001i     5.99e-002      8.67e+001     
 -5.19e+000 - 8.65e+001i      5.99e-002      8.67e+001     
 -2.40e+002                          1.00e+000      2.40e+002    

>> Gofb = feedback (Go,1) 
>> Step (Gofb) 
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3. Analysis of the Original System with the 
Aid of the Advanced D-Partitioning 

In addition to the unsatisfactory performance, the system 
may experience instability, due to uncertain parameters. It 
is considered that its gain and one of its time-constants 
may be variable as a result of external disturbances.  
 
In a number of previously published research [6], [7], [8], 
[9], [10], the author of this paper, further expanded the 
initial ideas of Neimark to a method of Advanced   D-
Partitioning, developing a generalized stability analysis 
tool. By implementing an interactive MATLAB procedure 
methodology, the Advanced D-Partitioning created by the 
author, is based on innovative transparent graphical 
display of regions of stability and instability in the space 
of system’s variable parameters. The basic principle, 
suggested by the author, is introducing the system’s 
characteristic equation in a format that exposes the 
variable parameter.  

If the variable parameter is presented as a complex 
number, the D-Partitioning regions can be obtained 
graphically in the complex plane of this parameter, by 
varying the frequency within the range   −∞ ≤ ω ≤ +∞. The 
D-Partitioning curve in terms of one variable parameter 
can be plotted in the complex plane within the frequency 
range −∞ ≤ ω ≤ +∞, facilitated by MATLAB the “nyquist” 
m-code.  

To avoid any misinterpretation of the D-Partitioning 
procedure, the “nyquist” m-code is modified into a 
“dpartition” m-code with the aid of the MATLAB Editor 
and a proper formatting. The “dpartition” m-code can plot 
the curve of a specific system parameter in terms of the 
frequency variation from −∞  to +∞. In order to benefit 
from the Advanced D-Partitioning analysis suggested by 
the author, the wider engineering community can still use 
the “nyquist” m-code for the purpose of plotting the D-
Partitioning curve.  

3.1 Case of Variable System Gain K 

Initially, the variation of the system’s gain K is explored 
with the aid of the method of the method of the Advanced 
D-partitioning. Taking into account the system’s forward 
transfer function as: 
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The characteristic equation of the closed-loop system is 
determined by: 
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The D-partitioning curve of the variable parameter K is 
obtained by substituting s = jω  in its Laplace format   
K(s) = –P(s)/Q(s) and varying the frequency within the 
range −∞ ≤ ω ≤ +∞ following the code [8], [9], [10]:   

 

 
 
 

 
Fig. 3 Advanced D-partitioning in terms of the gain K (original system) 

As seen from Figure 3, the D-partitioning determines three 
regions on the K-plane: D(0), D(1) and D(2). Only D(0) is 
the region of stability, being the one, always on the left-
hand side of the curve for a frequency variation from  −∞ 
to +∞ [7], [8], [9], [10]. The system is stable within the 
gain range   0 ≤ K ≤ 250. 

 

3.2 Case of Variable System Time-constant T 

Assuming a system gain of K = 240, close to the marginal 
case, one of the system’s time-constants, T1, is considered 
as variable. The forward transfer function of the system is 
presented as follows:  
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Then the characteristic equation of the closed-loop system 
is determined as: 

 0240)005,01)(1()( 1 =+++= ssTssA
T

        (12) 

By implementing the Advanced D-partitioning method, the 
regions of stability of the system can be determined in 
terms of the variable time-constant T1. From equation 
(12), the variable parameter is presented as follows: 

>> Gok = tf([1],[0.0001 0.025 1 0]) 
     >> [den,num]=tfdata(-Gok,'v') 

>> K=tf(num,den) 
>> nyquist(K) 
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The D-partitioning curve in terms of the variable time-
constant T1 is obtained as follows [7], [8]: 

 
 

   

 

Fig. 4 Advanced D-partitioning in terms of the time-constant  
(original system) 

 
As seen from Figure 4, the D-partitioning determines three 
regions on the T1-Plane: D(0), D(1) and D(2). Only D(0) 
is the region of stability, being always on the left-hand side 
of the D-partitioning curve for the frequency variation 
within the range −∞ ≤ ω ≤ +∞ [8]. This rule implies that 
for the considered case, where K = 240, the system will be 
stable if the parameter T1 is within the limited range 0 sec 
≤ T1 ≤ 0.025 sec.  A simultaneous variation of T1 and K 
results in a strong interaction between these two 
parameters [7], [8], [11]. 

4. Design of Optimal Series Compensation  
The system insufficient performance is due mainly to the 
large system gain. If for proper operation larger gain is still 
required, the system performance can be improved by 
applying series compensation. The system becomes stable 
and its performance is improved if a compensator network 
is connected in series [12]with the open-loop system. The 
transfer function of the phase-lead compensator is: 
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Pole and a zero values are determined to satisfy the design 
criteria of the closed loop system. The range of 
frequencies where the compensator’s corner frequencies 

TC αω /11 =  and TC /12 =ω can be placed is very limited. 
The following conditions should be satisfied [5], [9]: 
 

ocC ωωω << 101  and 202 Cωω <                          (15)    
      

Therefore, for the considered control system:  
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For the physical realization of the compensation 
network it is accepted that α ≤ 10. The lowest time-
constant T in the range is obtained by: 
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The highest value of the time-constant T in the range is 
obtained as: 
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Assuming α = 7, an array code to determine the optimal 
compensator time-constant [8], [9], [10] is applied. The 
results are shown in Table I. 

 

 

 

 

 
 

Table 1: Array results specifying a time-constant for optimal 
compensation performance 

n T[s] Gm[dB] Pm[º] 
1 0.0012 55.16 67.64 
2 0.0013 51.68 68.36 
3 0.0014 48.33 69.07 
4 0.0015 45.17 69.78 
5 0.0016 42.25 70.48 
6 0.0017 39.57 71.17 
7 0.0018 37.13 71.85 
8 0.0019 34.91 72.53 
9 0.0020 32.89 73.20 

 

From the results seen in Table 1, it is obvious that after the 
compensation, the phase margin has great improvement 
compared with the original phase margin of Pm = 7.73°. 

The fourth case, at a time-constant T = 0.0015[s] has a 
phase margin Pm = 69.78° that is the closest match to a 

>> T1 = tf([-0.005 -1 -240],[0.005 1 0 0]) 
    >> nyquist(T1) 

 

>> a =7 
>> T=[0.0012:0.0001:0.002] 
>> for n=1:length(T) 
Gc_array(:,:,n)=tf([a*T(n) 1],[a*T(n) a]) 

    End 
>> Gsc = (Go*Gc_array) 

>> [Gm,Pm]=margin(Gsc) 
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damping ratio ζ ≈ 0.707 of all the values in the range. It 
will be used for the design of the optimal phase-lead 
compensation. The transfer function of an optimal 
compensator and of the open-loop system can be 
determined by: 
 
 
 
 
 
 
 
 
 
 

 
Applying the optimal time constant of T = 0.0015[s], an 
array to verify the optimal compensator constant α is 
created [8], [9], [10]. The results are presented in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:  Array results specifying the constant  α  for   optimal 
compensation performance 

n α Gm[dB] Pm[º] 
1 4 55.1614 67.6423 
2 5 51.6778 68.3600 
3 6 48.3291 69.0725 
4 7 45.1712 69.7783 
5 8 42.2488 70.4773 
6 9 39.5709 71.1693 
7 10 37.1295 71.8541 
8 11 34.9086 72.5316 
9 12 32.8892 73.2015 

 
The results from Table 2 confirm that the optimal value 

for the compensator constant is α = 7. 
 

The transfer function of the close-loop compensated 
system and its transient response are determined as: 
 

 

 

 
 

 
 

Fig. 5 Comparison between the step responses of the compensated 
 and the original system 

 
The result is also proved by applying the Bode stability 
criterion as follows:   

 

 

 

 

 

 
 

Fig. 6 Bode diagrams of the compensated open-loop system 
 

The evaluation of the closed loop compensated system is 
performed as follows: 
 

 
 
 
   

 
 

>> Gc_4=Gc_array(:,:,4) 
 Transfer function: 
0.0105 s + 1 
------------ 
0.0105 s + 7  
>> Gsc_4= (Go*Gc_4) 
 Transfer function: 
1.89 s + 180 
------------------------------------------------ 
1.05e-006 s^4 + 0.0009625 s^3 + 0.1855 s^2 + 7 s  

 

>> a=[4:1:12] 
>> for n=1:length(a) 
Gc_array(:,:,n)=tf([a*T(n) 1],[a*T(n) a]) 
end 
>> Gsc = (Go*Gc_array) 
>> [Gm,Pm]=margin(Gsc) 

 
 

>> Wfb_4=feedback(Gsc_4,1) 
Transfer function: 
  1.89 s + 180 
--------------------------------------------------------- 
1.05e-006 s^4 + 0.0009625 s^3 + 0.1855 s^2 + 8.89 s + 180 
>> step(Wfb_4, Gofb) 

 

>> margin(Gsc_4) 

 

damp(Wfb_4) 
    Eigenvalue                           Damping      Freq. (rad/s)   
         -2.91e+001 + 2.28e+001i     7.17e-001      3.70e+001     

-2.91e+001 - 2.28e+001i      7.17e-001      3.70e+001     
-1.87e+002                           1.00e+000      1.87e+002     

     -6.72e+002                           1.00e+000      6.72e+002   
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The pair of dominant poles that represents the dynamics of 
the compensated system enforces a relative damping ratio 
of ζ = 0.717.  
 
The ratio of the settling time ts(1%), time to maximum time 
to overshoot  tm  and percent maximum overshoot PMO of 
the compensated system are obtained as follows [11], [12]: 
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The achieved results from the optimal compensation and 
the objectives are compared in Table 3. 

 

Table 3: Performance results before and after the compensation   

Properties Objectives Before 
Compensation 

After 
Compensation 

ζ 0.707 0.0599 0.717 

ts / tm   ≤2.5 24.41 1.42 

PMO ≤4% 59.52% 2.06%         

 

It is obvious that after applying compensation, the 
performance of the system is very close or better than the 
required performance objectives.  

5. Design Advanced D-Partitioning Analysis 
of the Compensated system  

Considering uncertain gain K, D-partitioning in terms of K 
of the compensated system is explored. The characteristic 
equation of the compensated closed-loop system is 
determined as: 
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>> K=tf([-0.000000105 -0.0009625 -0.1855 -8.89],[0 1]) 

>> nyquist(K) 

 
Fig. 7 Advanced D-partitioning in terms of the gain K  

(compensated system) 
 

As seen from Figure 7, the region of stability D(0).  It is 
on the left-hand side of the D-partitioning curve for a 
frequency variation from  −∞ to +∞ and determines much 
larger gain range 0 ≤ K ≤ 1670 at which the system 
remains stable. 
 
Further, the uncertainty of the system’s time-constants T1 
is considered. Assuming a system gain K = 240, T1 is 
determined from the characteristic equation of the 
compensated system. A procedure similar to the analysis 
of the original system is followed. As a result, the D-
partitioning curve in terms of the variable time-constant T1 
is obtained with the procedure: 
 

>> T1 = tf([-0.00053 -0.0455 -9.52 -240],[0.000053 0.046 7 0 0]) 

>> nyquist(T1) 

 
 

Fig. 8 Advanced D-partitioning in terms of the variable time-constant 
related to the compensated system 
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As seen from Figure 8, D(0) is the region of stability, 
being on the left-hand side of the D-partitioning curve for 
the frequency variation within −∞ ≤ ω ≤ +∞. This implies 
that if the parameter T1 is within the range of 0 ≤ T1 ≤  +∞ 
the system will be always stable. However this result is 
correct for the system gain of K = 240. Due to the 
interaction between T1 and K [8], ]12], larger system gain 
will again limit the range of T1 at which the system will be 
stable. 

6. Conclusions 
Many control systems experience oscillation of their 
output signal when subjected to a step input. This may be 
due to different reasons, but usually a high system gain 
causes low phase margin and consequently a poor relative 
damping ratio. In some extreme cases this may lead even 
to system instability. Although, there are different methods 
of improving the system performance, this research is 
focusing mainly on the phase-lead series compensation 
and its optimization with the aid of proper MATLAB 
procedures. The suggested technique could be applied to 
phase-lag compensation as well.  
 
One of the contributions of this paper is suggesting a 
procedure for optimization of the compensator’s corner 
frequencies resulting in the best system performance. The 
achieved results show that by applying the array search 
within a specified area of interest, it is possible to find the 
optimal compensator parameters that will deliver the finest 
system performance under the current circumstances.  
Phase-lead compensation is chosen in this research, since 
it is preferred for the higher system gain within the higher 
frequency range [4, 12]. The suggested array procedure 
proved to be a powerful tool for optimization design of 
system controllers.  
 

From comparing the achieved performance results with 
the require performance criteria objectives, it is obvious 
that after applying compensation, the performance of the 
system is even better than the required performance 
objectives. The graphical comparison of the system’s 
transient responses before and after the compensation also 
proves the considerable improvement of the system 
performance. 

 
D-partitioning analysis, applied for the original control 
system, demonstrates that the system’s parameters 
variation and uncertainty may easily cause deteriorating 
performance or even instability. It is also seen from the 
results that the range of variation of the system’s gain or a 
time-constant is quite limited. After implementing the 
suggested optimized compensation, the D-partitioning 
analysis reveals graphically considerable better range of 
parameters margins at of the system’s range of stability. 

The outcome and the analysis shown in this research can 
be easily extended for system optimization in case of 
feedback compensation and also in case of optimizing any 
other type of controllers. 
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